cho a,b,c là các số thực không âm thõa mãn a^2+b^2+c^2>0 CMr (3a^2-bc)/(2a^2+b^2+c^2)+(3b^2-ca)/(2b^2+a^2+c^2)+(3c^2-ab)/(2c^2+a^2+c^2) =<3/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Kẻ đường cao AH ( H thuộc BC)
Theo hệ thức giữa cạnh và đường cao trong tam giác vuông tính được \(\frac{1}{AH^2}\) =\(\frac{1}{AB^2}\) +\(\frac{1}{AC^2}\) (chỗ này bn tự thay số ở đề bài để tính nha)=>AH=12(=R)
=> đường thắng BC là tiếp tuyến của đường tròn tâm A, bán kính 12cm
chúc bn học tốt

ta có
\(\sqrt{\left(x-5\right).1}\le\frac{x-5+1}{2}=\frac{x-4}{2}\)
\(\sqrt{\left(7-x\right).1}\le\frac{7-x+1}{2}=\frac{-x+8}{2}\)
\(\Rightarrow P\ge\frac{x-4}{2}+\frac{8-x}{2}=2\)
Dấu = xảy ra <=> \(\hept{\begin{cases}x-5=1\\7-x=1\end{cases}\Leftrightarrow x=6}\)
vậy min P=2 khi x=6

\(\Leftrightarrow\hept{\begin{cases}x>=1\\4\left(x^2-2x+1\right)=2x^2+2x+2\end{cases}}\) \(\Leftrightarrow4x^2-8x+4=2x^2+2x+2\)
\(\Leftrightarrow x^2-5x+1=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{21}}{2}\left(tm\right)\\x=\frac{5-\sqrt{21}}{2}\left(ktm\right)\end{cases}}\)
Thay x=\(\frac{5+\sqrt{21}}{2}\)vào T là xong