K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

Ta có : \(A=\frac{2010x+2680}{x^2+1}\)

\(=\frac{-335x^2-335+335x^2+2010x+3015}{x^2+1}\)

\(=-335+\frac{335\left(x+3\right)^2}{x^2+1}\ge-335\)

Dấu : \("="\)xảy ra khi và chỉ khi :

\(\frac{335\left(x+3\right)^2}{x^2+1}=0\)

\(\Leftrightarrow335\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(x+3\right)^2=0\)

\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy GTNN của \(A\)là : \(-335\Leftrightarrow x=-3\)

24 tháng 3 2019

gt: a/(b+c) + b/(c+a) + c/(a+b) = 1
A = a²/(b+c) + b²/(c+a) + c²/(a+b) = a[a/(b+c)] + b[b/(c+a)] + c[c/(a+b)]
= a[a/(b+c) + 1 - 1] + b[b/(c+a) + 1 - 1] + c[c/(a+b) + 1 - 1]
= a.(a+b+c)/(b+c) -a + b.(a+b+c)/(c+a) - b + c.(a+b+c)/(a+b) - c
= (a+b+c)[a/(b+c) + b/(c+a) + c/(a+b)] - (a+b+c)
= (a+b+c) - (a+b+c) = 0    

24 tháng 3 2019

Ta có : Nếu : \(a+b+c=0\) thì từ giả thiết, suy ra :

\(a+b=-c;b+c=-a;a+c=-b\)

Khi đó : \(1=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}=-3\)( vô lý )

\(\Rightarrow a+b+c\ne0\)

Nhân cả hai vế của : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)với : \(a+b+c\ne0\)

ta được : \(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\left(đpcm\right)\)

24 tháng 3 2019

A B C H 1 2

Ta có: \(HB< HC\Rightarrow AB< AC\)(đường xiên ,hình chiếu)

Trong tam giác ABC có ; \(AB< AC\Rightarrow\widehat{C}< \widehat{B}\)(góc và cạnh đối diện trong tam giác )

\(\Rightarrow90^0-\widehat{C}>90^0-\widehat{B}\)   

Do \(AH\perp BC\Rightarrow\widehat{HAC}=90^0-\widehat{B};\widehat{HAC}=90^0-C\)

\(\Rightarrow\widehat{HAB}=\widehat{HAC}\)

24 tháng 3 2019

A B C H E

Trên HC lấy điểm E sao cho HB=HE.

Suy ra E nằm giữa H và C vì HE<HC.

Xét tam giác ABE có AE đồng thời là đường cao,đường trung tuyến nên tam giác ABE cân tại A.

\(\Rightarrow AB=AE,\widehat{ABE}=\widehat{AEB}\)

Do ^AEH là góc ngoài của tam giác AEC nên \(\widehat{AEH}>\widehat{ACB}\)

Suy ra \(\widehat{ABE}>\widehat{ACB}\)hay \(AB< AC\)(quan hệ giữa góc và cạnh đối diện)

Đến đây mới áp dụng như bạn được nhé.Đề đã cho AB<AC đâu!

24 tháng 3 2019

 bạn giải sao