(x-1)2012+(y-2)2010+(x-z)2008=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2^{12}\cdot27^3+20\cdot6^9}{2\cdot6^{10}+12^6\cdot3^5}\)
\(=\frac{2^{12}\cdot\left(3^3\right)^3+2^2\cdot5\cdot2^9\cdot3^9}{2\cdot2^{10}\cdot3^{10}+\left(2^2\right)^6\cdot3^6\cdot3^5}\)
\(=\frac{2^{12}\cdot3^9+2^{11}\cdot5\cdot3^9}{2^{11}\cdot3^{10}+2^{12}\cdot3^{11}}\)
\(=\frac{2^{11}\cdot3^9\left(2\cdot5\right)}{2^{11}\cdot3^{10}\left(2\cdot3\right)}\)
\(=\frac{2^{11}\cdot3^9\cdot10}{2^{11}\cdot3^{10}\cdot6}\)
\(=3\cdot\frac{10}{6}=\frac{30}{6}=5\)
Bạn tham khảo link này nha ! Có lời giải đó :
http://olm.vn/hoi-dap/detail/26954556179.html
\(\left|x+5\right|\le2\Rightarrow-2\le x+5\le2\)
\(\Rightarrow x+5\in\left\{-2;-1;0;1;2\right\}\)
\(\Rightarrow x\in\left\{-7;-6;-5;-4;-3\right\}\)
\(\left(x^2-5\right)\left(x^2-10\right)\left(x^2-15\right)\left(x^2-20\right)< 0\)
Xét 2 trường hợp:
TH1:Trong 4 số có 3 số âm 1 số dương.
Theo bài ra,ta có:\(\hept{\begin{cases}x^2-5>0\\x^2-10< 0\end{cases}}\Rightarrow\hept{\begin{cases}x^2>5\\x^2>10\end{cases}\Rightarrow}5< x^2< 10\Rightarrow x=3\left(h\right)x=-3\)
TH2:Trong 4 số có 3 số dương,1 số âm.
Theo bài ra,ta có:\(\hept{\begin{cases}x^2-20< 0\\x^2-15>0\end{cases}\Rightarrow}\hept{\begin{cases}x^2< 20\\x^2>15\end{cases}}\Rightarrow15< x^2< 20\Rightarrow x=4\left(h\right)x=-4\)
Vậy \(x\in\left\{3;-3;4;-4\right\}\)
a, xét t.giác ADB và t.giác AEC có:
AB=AC(gt)
\(\widehat{A}\)chung
=> \(\Delta\)ADB=\(\Delta\)AEC(CH-GN)
b,vì \(\widehat{B}\)=\(\widehat{C}\)(tam giác ABC cân tại A) mà \(\widehat{ABD}\)=\(\widehat{ACE}\)(theo câu a)
=>\(\widehat{OBC}\)=\(\widehat{OCB}\)
=>t.giác BOC cân tại O
c,vì AE=AD(theo câu a) suy ra t.giác AED cân tại A => \(\widehat{AED}\) =\(\widehat{ADE}\)mà t.giác ABC cx cân tại=>\(\widehat{B}\)=\(\widehat{C}\)
=> \(\widehat{AED}\)=\(\widehat{B}\)mà 2 góc này ở vị trí đồng vị nên => ED//BC
d, ta có
\(7a+4b=1994\Rightarrow b=1994-\frac{7a}{4}\)
\(=\left(498-a\right)+2-\frac{3a}{4}=\left(498-a\right)+\left(1-a\right)\)
Vì b là số tự nhiên nên \(2-a⋮4\)
Đặt \(2-a=4k\Rightarrow a=2-4k\left(k\in N\right)\)
Thay vào \(7a+4b=1994\)Ta có: \(b=7k+495\)
\(\Rightarrow\frac{4}{7}< \frac{2-4k}{7k+495}< \frac{2}{3}\)
- Tự làm tiếp nhé !! :)
A B C O E D M
Cm: a) Xét t/giác ADB và t/giác AEC
có góc ADB = góc AEC = 900 (gt)
AB = AC (gt)
góc A : chung
=> t/giác ADB = t/giác AEC (ch - gn)
b) Ta có : t/goác ADB = t/giác AEC (cmt)
=> góc ABD = góc ACE (hai góc tương ứng)
Mà góc B = góc ABD + góc DBC
góc C = góc ACE + góc ECB
Và góc B = góc C (vì t/giác ABC cân)
=> góc DBC = góc ECB
hay góc OBC = góc OCB
=> t/giác BOC cân tại O
c) ta có: t/giác ADB = t/giác AEC (cm câu a)
=> AE = AD (hai cạnh tương ứng)
=> t/giác AED là t/giác cân tại A
=> góc AED = góc ADE = \(\frac{180^0-\widehat{A}}{2}\)(1)
Ta lại có: t/giác ABC cân tại A
=> góc B = góc C = \(\frac{180^0-\widehat{A}}{2}\)(2)
Từ (1) và (2) suy ra góc AED = góc ADE = góc B = góc C
Mà góc AED và góc B ở vị trí đồng vị
=> ED // BC (Đpcm)
d) ko Cm đc
A B C D E M O
a)Xét hai tam giác vuông:\(\Delta ADB\)và \(\Delta AEC\)có:
AB=AC(vì \(\Delta ABC\)cân tại A)
\(\widehat{A}\)chung
Do đó:\(\Delta ADB=\Delta AEC\)(cạnh huyền-góc nhọn)
b)Vì \(\Delta ADB=\Delta AEC\)(câu a) nênAD=AE(hai cạnh tương ứng)
Ta có:AD+DC=AC
AE+EB=AB
Mà AD=AE(cmt), AB=AC(gt)
=>DC=EB
Xét hai tam giác vuông:\(\Delta OEB\)và \(\Delta ODC\)có
EB=DC(cmt)
\(\widehat{EOB}=\widehat{DOC}\)(đối đỉnh)
Do đó: \(\Delta OEB=\Delta ODC\)(cạnh góc vuông-góc nhọn)
=>OB=OC(hai cạnh tương ứng)
=>\(\Delta BOC\)cân tại O
c)\(\Delta AED\)có AD=AE (câu b)
=>\(\Delta AED\)cân tại A
\(\Rightarrow\widehat{E}=\widehat{D}=\frac{180^0-\widehat{A}}{2}\left(1\right)\)
\(\Delta ABC\)cân tại A(gt)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{D}=\widehat{C}\)
Mà hai góc này nằm ở vị trí đồng vị
=>ED//BC
Câu d bn xem lại đề bài nhé!
~~~~~~~~~~~~~~~~~~~~~~Học tốt~~~~~~~~~~~~~~~~~~~~
E A B H C 1 2
Cm: a) Xét t/giác ABE và t/giác HBE
có góc A = góc H1 = 900 (gt)
BE : chung
góc ABE = góc EBH (gt)
=> t/giác ABE = t/giác HBE (ch - gn)
b) Ta có: t/giác ABE = t/giác HBE (cmt)
=> AE = EH (hai cạnh tương ứng) (1)
Xét t/giác EHC có góc H2 = 900
=> EC > EH (cạnh đối diện với góc vuông là cạnh lớn nhất) (2)
Từ (1) và (2) suy ra EA < EC (Đpcm)
Suy ra x-1=0;
y-2=0
x-z=0
suy ra x=1;y=2;z=1