Cho tam giác ABC đường trung tuyến AM và trọng tâm G. Trên tia đối của tia MA lấy các điểm I và K sao cho MI = MG, IK = IG. Gọi N là trung điểm của CK. Chứng minh rằng ba điểm B, I, N thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB+AC chứ ko phải AB=AC
Trên tia đối của tia MA lấy điểm D sao cho AM=MD
CM t/g MAB=t/g MDC (c.g.c) => AB=DC (1)
Áp dụng BĐT t/g, ta có:
AD<AC+DC => 2AM<AC+AB => AM < (AC+AB)/2 (vì AM=MD và (1)
Vậy...
p/s: hôm qua có 1 tin nhắn gửi cho bạn (lúc bạn đang onl về giải bài này) mà bn đ' đọc :((
Sửa đề: \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
Xét hai trường hợp:
TH1: 1 số dương,3 số âm thì:
\(x^2-1>0>x^2-4\Leftrightarrow1< x^2< 4\).Do x nguyên nên không có giá trị x thỏa mãn.
TH2: 3 số dương,1 số âm thì:
\(x^2-7>0>x^2-10\Leftrightarrow7< x^2< 10\).Do x nguyên nên x2 = 9 suy ra x = 3 hoặc x = -3
a) Ta có : \(|x-7|\ge0\)
\(\Rightarrow A=124-5|x-7|\ge124\left(1\right)\)
Mà \(A=0\)
\(\Leftrightarrow5|x-7|=0\)
\(\Leftrightarrow x=7\left(2\right)\)
Từ (1) và (2) => max A = 124
b)
+) Với \(x\ge\frac{2}{3}\)thì \(x-\frac{2}{3}\ge0\)
\(\Rightarrow|x-\frac{2}{3}|=x-\frac{2}{3}\)
Thay vào ta tính được \(B=\frac{7}{6}\)( bạn tự thay vào tính nha )
Còn lại bạn tự làm nha .
Cuối cùng ra \(_{max}B=\frac{7}{6}\)
Để M bé nhất => \(|x-5|\)bé nhất.
\(\Rightarrow|x-5|=0\Rightarrow x-5=0\Rightarrow x=5\)
Thay x vào M, ta có:
\(M=|x-2|+|x-3|+|x-4|+|x-5|\)
\(\Rightarrow M=|5-2|+|5-3|+|5-4|+|5-5|\)
\(\Rightarrow M=3+2+1+0=6\)
Vậy M có giá trị nhỏ nhất = 6 khi x = 5.
\(\left|x-2\right|+\left|x-5\right|=\left|-x+2\right|+\left|x-5\right|\ge\left|-x+2+x-5\right|=3\)(1)
\(\left|x-3\right|+\left|x-4\right|=\left|-x+3\right|+\left|x-4\right|\ge\left|-x+3+x-4\right|=1\)(2)
\(M\ge3+1=4\)
Dấu = xảy ra khi \(\hept{\begin{cases}\left(-x+2\right).\left(x-5\right)\ge0\\\left(-x+3\right).\left(x-4\right)\ge0\end{cases}\Leftrightarrow3\le x\le4}\)
Vậy...