Rút gọn biểu thức :
\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho mk hỏi cái đề là \(\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{abc}+1\) hay \(\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{abc+1}\) ???
Mình nghĩ là 2 đường thẳng không song song thì luôn là 2 cạnh của 1 góc mà đỉnh của nó chính là điểm giao.
hai đường thẳng
không song song luôn
cắt nhau tại 1 điểm
=> 2 đường thẳng không song song
luôn luôn có điểm giao
ưu tiên phương pháp bình phương :
a) \(\left(4+\sqrt{15}\right)^2\left(\sqrt{10}-\sqrt{6}\right)^2\left(\sqrt{4-\sqrt{15}}\right)^2\)
\(=\left(4+\sqrt{15}\right)^2\left(4-\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)^2\)
Tính ra kết quả nhớ căn đó
b) Phương pháp trục căn thức :
\(\frac{\sqrt{3+\sqrt{5}}\sqrt{3-\sqrt{5}}}{\sqrt{3-\sqrt{5}}}-\frac{\sqrt{3-\sqrt{5}}\sqrt{3+\sqrt{5}}}{\sqrt{3+\sqrt{5}}}-\sqrt{2}\)
Trên tử có hàng đẳng thức . bạn tự quy động là ra
Đường tròn c: Đường tròn qua B_1 với tâm A_1 Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [C, A] Đoạn thẳng l: Đoạn thẳng [A, M] Đoạn thẳng m: Đoạn thẳng [P, C] Đoạn thẳng n: Đoạn thẳng [B, N] Đoạn thẳng p: Đoạn thẳng [B, M] Đoạn thẳng q: Đoạn thẳng [F, E] Đoạn thẳng r: Đoạn thẳng [F, D] Đoạn thẳng s: Đoạn thẳng [E, D] Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm P: Giao điểm của c, k Điểm P: Giao điểm của c, k Điểm P: Giao điểm của c, k Điểm F: Giao điểm của k, f Điểm F: Giao điểm của k, f Điểm F: Giao điểm của k, f Điểm E: Giao điểm của j, h Điểm E: Giao điểm của j, h Điểm E: Giao điểm của j, h Điểm N: Giao điểm của c, j Điểm N: Giao điểm của c, j Điểm N: Giao điểm của c, j Điểm D: Giao điểm của i, g Điểm D: Giao điểm của i, g Điểm D: Giao điểm của i, g Điểm M: Giao điểm của c, i Điểm M: Giao điểm của c, i Điểm M: Giao điểm của c, i Điểm H: Giao điểm của l, m Điểm H: Giao điểm của l, m Điểm H: Giao điểm của l, m
Cô hướng dẫn nhé.
a) Tứ giác CEHD nội tiếp vì có góc E và góc D vuông.
b) Bốn điểm B, C ,E , F cùng thuộc một đường tròn vì góc E và góc F vuông.
c) Ta có các tam giác đồng dạng : \(\Delta AEH\sim\Delta ADC\left(g-g\right)\Rightarrow\frac{AE}{AD}=\frac{AH}{AC}\Rightarrow AE.AC=AD.AH\)
Tương tự \(\Delta BEC\sim\Delta ADC\left(g-g\right)\Rightarrow\frac{BE}{AD}=\frac{BC}{AC}\Rightarrow BE.AC=AD.BC\)
d) Do \(\Delta BEC\sim\Delta ADC\Rightarrow\widehat{CBN}=\widehat{CAM}\Rightarrow\widebat{NC}=\widebat{MC}\)
Từ đó suy ra \(\widehat{HBD}=\widehat{DBM}\) hay tam giác HBM cân tại B. Vậy BD là trung trực MH hay H, M đối xứng nhau qua BC.
e) Do tứ giác BCEF nội tiếp nên \(\widehat{EFC}=\widehat{EBC}\)
Ta cũng cm được tứ giác AFDC nội tiếp nên \(\widehat{DFC}=\widehat{DAC}\)
Mà \(\widehat{EBC}=\widehat{DAC}\) nên \(\widehat{DFC}=\widehat{CFE}\) hay FH là phân giác góc F.
Tương tự có EH, DH là các đường phân giác trong tam giác DEF.
Suy ra tâm đường tròn nội tiếp tam giác DEF chính là giao điểm của EH, FH, DH và chính là điểm H.
a,
\(\frac{\sqrt{6}\left(\sqrt{3}-1\right)}{\sqrt{3}\left(\sqrt{3}-1\right)}+\sqrt{\frac{\left(2-\sqrt{2}\right)^2}{\left(2+\sqrt{2}\right).\left(2-\sqrt{2}\right)}}\)
=\(\sqrt{2}+\frac{2-\sqrt{2}}{\sqrt{2}}\)
=\(\sqrt{2}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}}\)
=\(\sqrt{2}+\sqrt{2}-1\)
=\(2\sqrt{2}-1\)
còn tiếp
b=,\(\frac{6\sqrt{3}}{3}-\frac{\sqrt{3}\left(1-\sqrt{3}\right)}{\sqrt{3}}-\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{2}-\sqrt{3}}\)
=\(6-1+\sqrt{3}-\sqrt{6}\)
=\(5+\sqrt{3}+\sqrt{6}\)
\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
\(=\sqrt{6+2\sqrt{5-\sqrt{13+4\sqrt{3}}}}\)
\(=\sqrt{6+2\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+4\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)