K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

áp dụng định lí PITAGO vào tam giác vuông ABC : \(AB^2+AC^2=BC^2\)

                                                                    \(\Leftrightarrow AB^2+\left(\frac{3}{2}AB\right)^2=12^2\)

                                                                        \(\Leftrightarrow\frac{13}{4}AB^2=12^2\Rightarrow AB=\frac{24\sqrt{13}}{13}\)

SUY RA \(AC=\frac{36\sqrt{13}}{13}\)

5 tháng 7 2017

1. Hướng làm đặt kiểu tổng tích.
\(\hept{\begin{cases}4x^2-4x+4\left(y^2-2y\right)=22-1-4=17\\\left(4x^2-4x\right).4\left(y^2-2y\right)=2.16=32\end{cases}}\)

2. \(x^2y^2+2y-x-x^2y^2-x-y=2xy-3xy \)
\(y-2x=xy< => y\left(1-x\right)=2x=>y=\frac{2x}{1-x}\)
. Hoặc 
chia 2 vế pt cho xy(xy khác 0)  vầ đặt biến \(\left(\frac{1}{x};\frac{1}{y}\right)=\left(a;b\right)\)

5 tháng 7 2017

a)\(P=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{11\sqrt{x}-3}{x-9}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+11\sqrt{x}}{x-9}\)

\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}}{x-9}\)

\(=\frac{3x+9\sqrt{x}+3}{x-9}\)

\(=\)...

5 tháng 7 2017

a) Thay số và dễ dàng tìm được nghiệm x, y

b) Giải tổng quát 

\(\hept{\begin{cases}x+m^2x-m^3+2m=3m\\y=mx-m^2+2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m\\y=mx-m^2+2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m\\y=2\end{cases}}\)

\(x^2-2x-y=m^2-2m-2>0\)

Tới đây em có thể làm tiếp.

4 tháng 7 2017

cái chứng minh sửa thành là \(\sqrt{1+xy}\in Q\)

5 tháng 7 2017

\(\left(x+y\right)^2+\frac{\left(xy+1\right)^2}{\left(x+y\right)^2}=2\left(xy+1\right).\)
\(Dat-\left(xy+1;x+y\right)=\left(b;a\right)\)
\(a^2+\frac{b^2}{a^2}=2b < =>a^4+b^2-2a^2b=0\)
\(\left(a^2-b\right)^2=0\)
\(b=a^2=>\sqrt{b}=\sqrt{xy+1}=\left|a\right|\) 
Thuộc Q=> ĐPCM
 

5 tháng 7 2017

Áp dụng BĐT Cô-si ta có

\(\left(\sqrt{x^2-x+1}+\sqrt{x^2+x+1}\right)^2\ge4\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)

\(=4\sqrt{x^4+x^2+1}\ge4\sqrt{0+0+1}=4\)

\(\Rightarrow\)  \(\sqrt{x^2-x+1}+\sqrt{x^2+x+1}\ge2\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}x^4=0\\x^2=0\\\sqrt{x^2-x+1}+\sqrt{x^2+x+1}\end{cases}}\)    \(\Leftrightarrow\)  x = 0

Vậy S={0}.

4 tháng 7 2017

\(\sqrt{x^2+4x+3}+\sqrt{x^2+x}=\sqrt{3x^2+4x+1}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+3\right)}+\sqrt{x\left(x+1\right)}=\sqrt{\left(x+1\right)\left(3x+1\right)}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+3\right)}+\sqrt{x\left(x+1\right)}-\sqrt{\left(x+1\right)\left(3x+1\right)}=0\)

\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{x+3}+\sqrt{x}-\sqrt{3x+1}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+3}+\sqrt{x}=\sqrt{3x+1}\end{cases}}\)

Suy ra x=-1 pt còn lại bình lên là thấy vô nghiệm

4 tháng 7 2017

đề bài là gì bạn

4 tháng 7 2017

áp dụng bất đẳng thức Cauchy ta có:

\(\left(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\right)^2\ge4\sqrt{\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

                                                                              \(=4\sqrt{x^4+x^2+1}\ge4\sqrt{0+0+1}=4\)

\(\Rightarrow\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\ge2\)

dấu bằng xảy ra khi x=0;1

4 tháng 7 2017

hình như sai đề