Chứng minh bất đẳng thức sau :
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn tự vẽ hình nhé ^.^
từ B kẻ BH vuông góc với AC \(\Rightarrow SABC=\frac{1}{2}AC\cdot BH\)(1)
ap dung ti so luong giac trong tam giac ABH co \(BH=sinA\cdot AB\)
thay vao(1) ta co \(SABC=\frac{1}{2}AB\cdot AC\cdot sinA\left(DPCM\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của Đỗ Lê Thanh Thảo - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2-\sqrt{6-2\sqrt{5}}=2-\sqrt{\left(\sqrt{5}-1\right)^2}=2-\sqrt{5}+1=3-\sqrt{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐK \(x^2-\frac{1}{2x}+\frac{1}{16}\ge0\)
Pt \(\Rightarrow x^2-\frac{1}{2x}+\frac{1}{16}=\left(\frac{1}{4}-x\right)^2\)với \(x\le\frac{1}{4}\)
\(\Rightarrow-\frac{1}{2x}=-\frac{1x}{2}\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\left(l\right)\\x=-1\left(tm\right)\end{cases}}\)
Vậy \(x=-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}=\frac{\left(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\right).\sqrt{\sqrt{5}-1}}{\sqrt{\sqrt{5}+1}.\sqrt{\sqrt{5}-1}}=\frac{\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}}{\sqrt{5-1}}\)\(=\frac{\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}}{2}=\frac{\sqrt{2}.\left(\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}\right)}{2\sqrt{2}}=\frac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}}{2\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}}{2\sqrt{2}}=\frac{\left|\sqrt{5}+1\right|+\left|3-\sqrt{5}\right|}{2\sqrt{2}}=\frac{\sqrt{5}+1+3-\sqrt{5}}{2\sqrt{2}}\)
\(=\frac{4}{2\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
Lại có: \(\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)
\(\Rightarrow\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}=\sqrt{2}-\left(\sqrt{2}-1\right)=1\)