K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

hình như đề sai hay sao ấy

tách mãi mà vẫn cứ phụ thuộc

đặt \(\sin\left(a\right)^2=x;\cos\left(a\right)^2=y;x+y=1\)

Ta có:

\(N=\sqrt{x^2+4y+\sqrt{y^2+4x}}=\sqrt{x^2+4\left(1-x\right)+\sqrt{y^2-4\left(1-y\right)}}\)

\(=\sqrt{x^2-4x+4+\sqrt{y^2-4y+4}}=\sqrt{\left(x-2\right)^2+\sqrt{\left(y-2\right)^2}}=\sqrt{\left(x-2\right)^2+\sqrt{\left(1-x-2\right)^2}}=\sqrt{\left(x-2\right)^2+\sqrt{\left(x+1\right)^2}}\)\(=\sqrt{x^2-4x+4+x+1}=\sqrt{x^2-3x+5}\)

để x2+x+1991 là số chính phương

=>x2+x là stn

=>x là số nguyên

đặt x2+x+1991=a2

=>4x2+4x+1991.4=4a2

=>(2x+1)2+7963=4a2

=>(2a-2x-1)(2a+2x+1)=7963

từ đó tìm x là được

11 tháng 9 2017

x hữu tỷ mà

9 tháng 7 2017

trang cho oi dau bdt sai roi ^.^ 

tao giai cho may ne 

\(\frac{3+a}{3-a}+\frac{3+b}{3-b}+\frac{3+c}{3-c}\)=\(\frac{2a+b+c}{b+c}+\frac{2b+a+c}{a+c}+\frac{2c+a+b}{a+b}\)

=\(2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)+3\ge2\cdot\frac{3}{2}+3=6\)

đến đây tự làm nhé

7 tháng 7 2017

BĐT Sai kìa.

(a,b,c)=(1;0.5;1,5) 
 

7 tháng 7 2017

\(A=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

   \(=\sqrt{\frac{2\left(4+\sqrt{7}\right)}{2}}-\sqrt{\frac{2\left(4-\sqrt{7}\right)}{2}}\)

   \(=\sqrt{\frac{8+2\sqrt{7}}{2}}-\sqrt{\frac{8-2\sqrt{7}}{2}}\)

   \(=\sqrt{\frac{7+2\sqrt{7}+1}{2}}-\sqrt{\frac{7-2\sqrt{7}+1}{2}}\)

   \(=\sqrt{\frac{\left(\sqrt{7}+1\right)^2}{2}}-\sqrt{\frac{\left(\sqrt{7}-1\right)^2}{2}}\)

   \(=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}\)

   \(=\frac{|\sqrt{7}+1|}{\sqrt{2}}-\frac{|\sqrt{7}-1|}{\sqrt{2}}\)

   \(=\frac{\sqrt{7}+1}{\sqrt{2}}-\frac{\sqrt{7}-1}{\sqrt{2}}\)

   \(=\frac{2}{\sqrt{2}}\)

7 tháng 7 2017

cho mình hỏi tại sao chia 2 vậy?

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-1=9\)

21 tháng 8 2017

rtrrfgfffjhfhfd

\(x=\frac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\)

\(\Leftrightarrow x^3=\frac{1}{4-\sqrt{15}}+4-\sqrt{15}+3\sqrt[3]{\sqrt[3]{\frac{1}{4-\sqrt{5}}}.\sqrt[3]{4-\sqrt{5}}}.x\)

\(=4+\sqrt{15}+4-\sqrt{15}+3x=8+3x\)

=>y=3x+8-3x+1987

=1995