Cho hình thang vuông ABCD (AB//CD) ,góc A =90 độ,AC vuông góc BD.Đường cao BH,biết BD=20 cm ,DH=16cm . a,tính AB+CD. b,Tính diện tích hình thang vuông ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi chiều rộng của mảnh đất là x (m) ĐK : x > 0
Vì diện tích của mảnh đất là 240m2 nên chiều dài là 240/x (m)
Nếu tăng chiều rộng 3m và giảm chiều dài 4m thì
Do diện tích không đổi
nên ta có phương trình
(x + 3) (240/x - 4) = 240
giải phương trình trên ta có x1 = 12(TMĐK )
x2 = -15 ( loại )
vây chiều rộng mảnh đất là 12m ,chiều dài là 20m
Gọi chiều rộng của mảnh đất là x (m) ĐK : x > 0
Vì diện tích của mảnh đất là 240m2 nên chiều dài là 240/x (m)
Nếu tăng chiều rộng 3m và giảm chiều dài 4m thì
Do diện tích không đổi
nên ta có phương trình
(x + 3) (240/x - 4) = 240
giải phương trình trên ta có x1 = 12(TMĐK )
x2 = -15 ( loại )
vây chiều rộng mảnh đất là 12m ,chiều dài là 20m
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x-3\)
\(\Leftrightarrow\left(\sqrt{x^2-2x+1}-3\right)-\left(\sqrt{x^2-4x+4}-2\right)=x-3-1\)
\(\Leftrightarrow\frac{x^2-2x+1-9}{\sqrt{x^2-2x+1}+3}-\frac{x^2-4x+4-4}{\sqrt{x^2-4x+4}+2}=x-4\)
\(\Leftrightarrow\frac{x^2-2x-8}{\sqrt{x^2-2x+1}+3}-\frac{x^2-4x}{\sqrt{x^2-4x+4}+2}-\left(x-4\right)=0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-4\right)}{\sqrt{x^2-2x+1}+3}-\frac{x\left(x-4\right)}{\sqrt{x^2-4x+4}+2}-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x+2}{\sqrt{x^2-2x+1}+3}-\frac{x}{\sqrt{x^2-4x+4}+2}-1\right)=0\)
Dễ thấy: \(\frac{x+2}{\sqrt{x^2-2x+1}+3}-\frac{x}{\sqrt{x^2-4x+4}+2}-1< 0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
b)\(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}=1\)
\(\Leftrightarrow\left(\sqrt{x^2-6x+9}-\frac{7}{2}\right)-\left(\sqrt{x^2+6x+9}-\frac{5}{2}\right)=0\)
\(\Leftrightarrow\frac{x^2-6x+9-\frac{49}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{x^2+6x+9-\frac{25}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)
\(\Leftrightarrow\frac{\frac{4x^2-24x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{4x^2+24x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)
\(\Leftrightarrow\frac{\frac{\left(2x-13\right)\left(2x+1\right)}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{\left(2x+1\right)\left(2x+11\right)}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(\frac{\frac{2x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{2x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}\right)=0\)
Dễ thấy: \(\frac{\frac{2x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{2x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}< 0\)
\(\Rightarrow2x+1=0\Rightarrow x=-\frac{1}{2}\)
c)Áp dụng BĐT CAuchy-Schwarz ta có:
\(P^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\)
\(\le\left(1+1\right)\left(x-2+4-x\right)\)
\(=2\cdot\left(x-2+4-x\right)=2\cdot2=4\)
\(\Rightarrow P^2\le4\Rightarrow P\le2\)
![](https://rs.olm.vn/images/avt/0.png?1311)