Chứng minh : a^2 - b^2= (a-b) (a+b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Từ \(4a^2+b^2=5ab\), ta có: \(4a^2-4ab-ab+b^2\)=0
Hay: (a-b) (4a-b)=0
Vì: 2a>b>0 nên 4a-b \(\ne\)0 .
Từ: (.) \(\Rightarrow\)
Từ: a-b=0 . Tức là: a=b
Thay a=b vào C ta được :
C= \(\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{1}{3}\)(do a\(\ne\)0)


1) a) A= (x+2)(\(x^2-2x+4\)) -(\(x^3-2\))
=(x+2)(\(x^2-2x+2^2\))-(\(x^3-2\))
= \(x^3+2^3\)-\(x^3+2\)
=(\(x^3-x^3\))+(\(2^3+2\))
=10
b) B= (a+2)(a-2)(\(a^2+2a+4\))(\(a^2-2a+4\))
= \(a^2-2^2\)+\(a^2+\left(2a\right)^2+4^2\)
=\(a^2-4+a^2+4a^2+16\)
=(\(a^2+a^2+4a^2\))+(-4+16)
=\(6a^2\)+12

Với số tự nhiên n, ta có:
\(\frac{n\left(n+1\right)}{2}+\frac{\left(n+1\right)\left(n+2\right)}{2}=\frac{n\left(n+1\right)}{2}+\frac{n\left(n+1\right)+2\left(n+1\right)}{2}\)
\(=\frac{n\left(n+1\right)}{2}+\frac{n\left(n+1\right)}{2}+n+1\)
\(=n\left(n+1\right)+n+1=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)là số chính phương

Từ gt => ab+bc+ca=0
\(a^2+2bc=a^2+bc+\left(-ab-ac\right)=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)
Tương tự \(\hept{\begin{cases}b^2+2ac=\left(b-a\right)\left(b-c\right)\\c^2+2ab=\left(c-a\right)\left(c-b\right)\end{cases}}\)
\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}=\frac{b-c+c-a+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\)
\(\Rightarrow bc=-ab-ca\)
Vậy thì \(a^2+2bc=a^2+bc-ab-ac=a\left(a-b\right)-c\left(a-b\right)=\left(a-c\right)\left(a-b\right)\)
Tương tự ta cũng có:
\(b^2+2ac=\left(b-c\right)\left(b-a\right)\)
\(c^2+2ab=\left(c-a\right)\left(c-b\right)\)
Vậy thì \(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
\(A=\frac{-b+c+a-c-a+b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(A=0.\)
Đó là hằng đẳng thức phải ko bạn
Đúng rồi bạn