1) Thực hiện phép tính:
a) \(\frac{\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}\)
b) \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MV xem nào;) Nhưng em ko chắc đâu nhá!
Đặt \(t=\frac{a+b}{2};f\left(a;b;c\right)=VT\). Xét:
\(f\left(a;b;c\right)-f\left(t;t;c\right)=ab-t^2+c\left(a+b-2t\right)-c\left(ab-t^2\right)\)
\(=\left(1-c\right)\left(ab-t^2\right)\le0\forall0< a,b,c< 1\) (chỉ cần nhận ra \(ab\le\frac{\left(a+b\right)^2}{4}=t^2\) là xong:v)
Do đó \(f\left(a;b;c\right)\le f\left(t;t;c\right)\). Ta sẽ chứng minh:
\(f\left(t;t;c\right)\le\frac{8}{27}\Leftrightarrow f\left(t;t;1-2t\right)\le\frac{8}{27}\)
Đến đây chắc ok rồi nhỉ? Hàm số 1 biến?
B C D A a M
Theo định lý cosin ta có
\(AD^2=AM^2+MD^2-2.MA.MD.cos\widehat{ÀMD}\)
Xé \(\Delta ABM\)có \(BM=\frac{a}{2}\)
\(AM=\sqrt{AB^2+BM^2}=\sqrt{a^2+\left(\frac{a}{2}\right)^2}=\frac{\sqrt{5}a}{2}\)
Xét \(\Delta DCM\)có \(CM=\frac{a}{2}\)
\(\Rightarrow DM=\sqrt{DC^2+CM^2}=\sqrt{a^2+\left(\frac{a}{2}\right)^2}=\frac{\sqrt{5}a}{2}\)
\(\Rightarrow\cos\widehat{AMD}=\frac{AM^2+MD^2-AD^2}{2.MA.MD}=\frac{\frac{5a^2}{4}+\frac{5a^2}{4}-a^2}{\frac{\sqrt{5}a}{2}.\frac{\sqrt{5}a}{2}}=\frac{3}{5}\)
Vậy \(\cos\widehat{AMD}=\frac{3}{5}\)
C A H B
Gỉa sử \(\Delta ABC\)cân tại C, kẻ \(CH⊥AB\)
Ta có VT= \(\cos^2A=\frac{AH^2}{AC^2};\cos^2B=\frac{BH^2}{BC^2}\Rightarrow\cos^2A+\cos^2B=\frac{AH^2}{AC^2}+\frac{BH^2}{BC^2}=2.\frac{AH^2}{AC^2}\)do \(\hept{\begin{cases}AH=BH\\AC=BC\end{cases}}\)
\(\sin^2A=\frac{CH^2}{CA^2};\sin^2B=\frac{CH^2}{CB^2}\Rightarrow\sin^2A+\sin^2B=2.\frac{CH^2}{CA^2}\)
\(\Rightarrow\frac{\cos^2A+\cos^2B}{\sin^2A+\sin^2B}=\frac{2.\frac{AH^2}{AC^2}}{2.\frac{CH^2}{AC^2}}=\frac{AH^2}{CH^2}\)
Ta có VP =\(\frac{1}{2}\left(\cot^2A+\cot^2B\right)=\frac{1}{2}.\left(\frac{AH^2}{CH^2}+\frac{BH^2}{CH^2}\right)=\frac{1}{2}\left(2.\frac{AH^2}{CH^2}\right)=\frac{AH^2}{CH^2}\)
Ta thấy VT=VP\(\Rightarrow\)giả sử đúng
Vậy ........
\(\frac{1}{\sqrt{7-2\sqrt{6}+1}}-\frac{1}{\sqrt{7+2\sqrt{6}}-1}\)=0,1596200809 NHA thien lu !!!
M2=(√4+√7−√4−√7)2
M2=(√4+√7)2−2.√4+√7.√4−√7+(√4−√7)2
M2=4+√7−2√(4+√7)(4−√7)+4−√7
M2=8−2√16−7
M2=8−2√9=8−2.3=8−6=2
M=+ √2
Một bài toán cổ điển:
A B C D E F .
Chứng minh rằng \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AB^2}\)
Thôi t chỉ liên tưởng thế thôi, vào bài nào :vv
A B C D E F H H
Cần chứng minh \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{3}\Leftrightarrow\frac{4}{AE^2}+\frac{4}{AF^2}=\frac{4}{3}\)
Ta có: AB//CF ( do ABCD là hình thoi ) \(\Rightarrow\frac{AB}{AE}=\frac{CF}{EF}\Leftrightarrow\frac{4}{AE^2}=\frac{CF^2}{EF^2}\)(theo định lý thales)
Tương tự ta cũng có: \(\frac{4}{AF^2}=\frac{CE^2}{EF^2}\)\(\Rightarrow\frac{4}{AE^2}+\frac{4}{AF^2}=\frac{CE^2+CF^2}{EF^2}\)
giờ chỉ cần chứng minh \(\frac{CE^2+CF^2}{EF^2}=\frac{4}{3}\Leftrightarrow EF=\frac{\sqrt{3\left(CE^2+CF^2\right)}}{2}\)(*)
Kẻ CH vuông góc với EF. Dễ dàng chứng minh góc CEF=45 và CFE=15
Trong tam giác vuông EHC:\(EH=CH.\cot45^0\)
Trong tam giác vuông FHC:\(FH=CH.\cot15\)\(\Rightarrow EF=CH.\left(\cot45^0+\cot15^0\right)\)
Tương tự ta có:\(CH=CE.\sin45^0\)\(\Rightarrow CE=\frac{CH}{\sin45^o}\)và \(CF=\frac{CH}{\sin15^o}\)
(*) được chứng minh khi \(4\left(\cot45+\cot15\right)^2=\frac{3}{\left(\sin45\right)^2}+\frac{3}{\left(\sin15\right)^2}\)
hình như nhầm ở đâu ý :< ứ gõ lại đâu