Chứng minh rằng với a,b,c > 0 thì \(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)
Help me!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\left(3+\frac{1}{417}\right).\frac{1}{762}-\frac{1}{139}\left(4+\frac{761}{762}\right)-\frac{4}{417.762}+\frac{5}{139}\)
=\(\frac{3}{762}+\frac{1}{417.762}-\frac{4}{139}-\frac{761}{139.762}-\frac{4}{417.762}+\frac{5}{139}\)
=\(\frac{3}{762}-\frac{1}{139.762}+\frac{1}{139}-\frac{761}{139.762}=\frac{3}{762}+\frac{1}{139}\left(-\frac{1}{762}+1\right)-\frac{761}{139.762}=\)
\(\frac{3}{762}+\frac{761}{139.762}-\frac{761}{139.762}=\frac{3}{762}\)
a) bn vt thiếu đề r
b) \(4x=1,5y\Rightarrow\frac{x}{1,5}=\frac{y}{4}=\frac{x+y}{1,5+4}=\frac{11}{5,5}=2.\)
=> x/1,5 = 2 => x = 3
y/4 = 2 => y= 8
KL:...
c) \(x=\frac{y}{2}=\frac{z}{2}=\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{4}=\frac{4x-3y+2z}{4-6+4}=\frac{36}{2}=18\)
...
d) \(x:y:z=3:5:\left(-2\right)\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5-6}=\frac{124}{4}=31\)
....
bn tự lm tiếp nha
\(\left|x-1\right|+\left|1-x\right|=4-x\)
\(\Leftrightarrow\left|x-1\right|+\left|x-1\right|=4-x\)
\(\Leftrightarrow2\left|x-1\right|=4-x\)
\(\Leftrightarrow\left|x-1\right|=\frac{4-x}{2}\)
Xét \(x\ge1\):
\(pt\Leftrightarrow x-1=\frac{4-x}{2}\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{2}-\frac{4-x}{2}=0\)
\(\Leftrightarrow\frac{2x-2-4+x}{2}=0\)
\(\Leftrightarrow3x-6=0\)
\(\Leftrightarrow x=2\)( thỏa mãn )
Xét \(x< 1\):
\(pt\Leftrightarrow1-x=\frac{4-x}{2}\)
\(\Leftrightarrow\frac{2\left(1-x\right)}{2}-\frac{4-x}{2}=0\)
\(\Leftrightarrow\frac{2-2x-4+x}{2}=0\)
\(\Leftrightarrow-x-2=0\)
\(\Leftrightarrow x=-2\)( thỏa mãn )
Vậy....
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
Gọi G là trọng tâm của \(\Delta ABC\)
Áp dụng bất đẳng thức tam giác vào các tam giác AGB, AGC và BGC, ta được:
\(\hept{\begin{cases}AG+BG>AB\\AG+GC>AC\\BG+GC>BC\end{cases}}\)
Cộng từng vế của các BĐT trên, ta được:
\(2\left(AG+GC+BG\right)>AB+AC+BC\)
Mà theo t/c của đường trung tuyến thì
\(\hept{\begin{cases}AG=\frac{2}{3}AN\\GC=\frac{2}{3}CQ\\BG=\frac{2}{3}BP\end{cases}}\)
\(\Rightarrow2\left(\frac{2}{3}AN+\frac{2}{3}CQ+\frac{2}{3}BP\right)>AB+AC+BC\)
\(\Rightarrow2.\frac{2}{3}\left(AN+CQ+BP\right)>AB+AC+BC\)
\(\Rightarrow\frac{4}{3}\left(AN+CQ+BP\right)>AB+AC+BC\left(đpcm\right)\)
Vì \(x^2+3^y=35\)nên \(3^y< 35\)
Vì \(3^3=27\),\(3^4=108>35\)
\(\Rightarrow y\in(1;2;3)\)
Nếu y=1 thì\(x^2+3^1=35\Rightarrow x^2=35-3=32\)
Nhưng không có bình phương nào bằng 32 \(\Rightarrow\)\(y\ne1\)
Nếu y=2 thì\(x^2+3^2=35\Rightarrow x^2=35-9=26\)
Nhưng không có bình phương nào bằng 26 \(\Rightarrow y\ne2\)
Nếu y=3 thì\(x^2+3^3=35\Rightarrow x^2=35-27=8\)
Nhưng không có bình phương nào bằng 8 \(\Rightarrow y\ne3\)
Vậy không có x,y để thỏa mãn điều kiện của đề bài.
Trên tia đối của MA lấy K sao cho AM=MK
Xét tam giác ABM và tam giác KCM có
BM=MC(gt)
AM=MK(gt)
góc AMB= góc CMK( đối đỉnh)
=> tam giác ABM= tam giác KCM( c-g-c)
=> AB=KC
Áp dụng bất đẳng thức tam giác ta có
AK <AC+CK
<=> 2AM<AC+AB
=> AM< (AC+AB)/2
Í em mới lớp 7 thôi hả
Vậy mà giỏi đến mức được làm công tác viên òi
Tức là chị là chị của công tác viên hí hí
~ lớp 8 ~
Lớp 7 nhưng chịu quá nhiều tai tiếng ạ,vs như lúc đó ko thuộc hằng đẳng thức bình phương của một tổng,làm xàm thế là...