cho tam giác ABC có AB =10cm . AC =13cm . trên tia đối AC lấy E sao cho AE=AB . qua A kẻ đường thẳng d vuông góc với BE . lấy m thuộc BC .cm
a, MB+MC > hoặc bằng EC
b, tìm m trên BC sao cho MB+MC nhỏ nhất
nhanh nhé ' thank kiu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E F
Xét tam giác ABC cân tại A có đường cao AH
=> AH là đường phân giác
=> \(\widehat{BAH}=\widehat{CAH}\)(1)
Ta có: \(\widehat{EAB}=\widehat{FAC}=90^o\)(2)
Mặt khác: \(\widehat{OAH}=\widehat{OAE}+\widehat{EAB}+\widehat{BAH}=\widehat{OAF}+\widehat{FAC}+\widehat{CAH}\)(3)
Từ (1), (2), (3) => \(\widehat{OAE}=\widehat{OAF}\)
Ta lại có Tam giác EAB cân tại A, BAC cân tại A, CAF cân tại A
=> AE=AB=AC=AF
Xét tam giác EOA và tam giác FOA có:
AF=AE
\(\widehat{OAE}=\widehat{OAF}\)
OA chung
=> \(\Delta EOA=\Delta FOA\)
=> OE=OF
Chỉ tìm được một trong hai thôi nhé!:)Và nhớ sửa đề chữ a thành x nhá,bn đánh nhầm thì phải!\(M=\frac{3x-7}{x+1}=\frac{3\left(x+1\right)}{x+1}-\frac{10}{x+1}=3-\frac{10}{x+1}\)
Ta có: với mọi x thuộc N thì \(x+1\ge0+1=1\) (do x nhỏ nhất là 0)
Suy ra \(\frac{10}{x-1}\le10\Rightarrow-\frac{10}{x-1}\ge-10\)
Suy ra \(M=3+\left(-\frac{10}{x-1}\right)\ge3-10=-7\forall x\inℕ\)
Vậy giá trị nhỏ nhất của M là -7 tại x =0
f(2)=g(0)
=> c=5
f(1)=g(1)
=> a+b+c=2 mà c=5 => a+b=-3 (1)
f(-1)=g(3)
=>9a+3b+c=2 mà c=5= > 9a+3b=-3=> 3a+b=-1(2)
(2)-(1) ta được:
2a=2=>a=1=> b=-4
VẬy g(x)=x^2-4x+5
t i ck ủng hộ tui nha
gọi d1,d2 lần lượt là chiều dài của tấm vải 1 và 3
gọi a1, a2 lần lượt là chiều rộng của tấm vải 1,2 có:
\(\frac{d1.a1}{5}=\frac{d1.a2}{8}=\frac{d2.a2}{6}\)
\(\Leftrightarrow\frac{a1}{5}=\frac{a2}{8}\text{ và}\frac{d1}{8}=\frac{d2}{6}\)
Đặt \(k=\frac{a1}{5}=\frac{a2}{8},m=\frac{d1}{8}=\frac{d2}{6}\)
\(\Leftrightarrow a1=5k,a2=8k\text{ và }d1=8m,d2=6m\)
\(\Leftrightarrow d1+d1+d2=110\Leftrightarrow8m+8m+6m=110\Leftrightarrow22m=110\)
tự làm tiếp ha =,=
\(\left(\sqrt{2}+\sqrt{12}\right)+\left(\sqrt{6}+\sqrt{20}\right)\)
Ta sẽ c/m \(\sqrt{2}+\sqrt{12}< 5\) và \(\sqrt{6}+\sqrt{20}< 7\)
Thật vậy:Ta cần c/m \(\sqrt{2}+\sqrt{12}< 5\Leftrightarrow2+2\sqrt{24}+12< 25\) (do hai vế đều dương nên bình phương cả hai vế lên khai triển -> phá ngoặc)
\(\Leftrightarrow2\sqrt{24}< 11\Leftrightarrow\sqrt{24}< \frac{11}{2}\) (1)
Ta có: \(\sqrt{24}< \sqrt{25}=5< \frac{11}{2}\)vậy (1) đúng suy ra \(\sqrt{2}+\sqrt{12}< 5\) (2)
Ta cần c/m: \(\sqrt{6}+\sqrt{20}< 7\Leftrightarrow6+2\sqrt{120}+20< 49\)
\(\Leftrightarrow2\sqrt{120}=23\Leftrightarrow\sqrt{120}< \frac{23}{2}\) (3)
Ta có: \(\sqrt{120}< \sqrt{121}=11< \frac{23}{2}\) do đó (3) đúng suy ra \(\sqrt{6}+\sqrt{20}< 7\) (4)
Cộng theo vế (2) và (4) ta được: \(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 7+5=12^{\left(đpcm\right)}\)
P/s: Bài easy + nhiều cách giải mà không ai chém nhỉ?
a. Rút gọn đa thức và sắp xếp theo thứ tự giảm dần của biến..
\(A\left(x\right)=13x^4+3x^2+15x+7x^2-10x^4-7x-6-8x+15\)
\(=\left(13x^4-10x^4\right)+\left(3x^2+7x^2\right)+\left(15x-7x-8x\right)+\left(15-6\right)\)
\(=3x^4+10x^2+9.\)
\(B\left(x\right)=5x^4+10-5x^2-18+3x-10x^2-3x-4x^4\)
\(=\left(5x^4-4x^4\right)+\left(-5x^2-3x^2\right)+\left(3x-3x\right)+\left(10-18\right)\)
\(=x^4-8x^2-8\)
b. Tính M = A(x) + B(x) ; N = A(x) - B(x)
\(M=A\left(x\right)+B\left(x\right)=\left(3x^4+10x^2+9\right)+\left(x^4-8x^2-8\right)\)
\(=\left(3x^4+x^4\right)+\left(10x^2-8x^2\right)+\left(10-8\right)\)
\(=4x^4+2x^2+2\)
\(N=A\left(x\right)-B\left(x\right)=\left(3x^4+10x^2+9\right)-\left(x^4-8x^2-8\right)\)
\(=3x^4+10x^2+9-x^4+8x^2+8\)
\(=\left(3x^4-x^4\right)+\left(10x^2+8x^2\right)+\left(9+8\right)\)
\(=2x^4+18x^2+17\)
a) \(\frac{x-1}{-15}=\frac{-60}{x-1}\)
\(\Leftrightarrow-\left(x-1\right)\left(x-1\right)=\left(-15\right).60\)
\(\Leftrightarrow-\left(x-1\right)^2=-900\)
\(\Leftrightarrow\left(x-1\right)^2=900\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=30^2\\\left(x-1\right)^2=-30^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=30\\x-1=-30\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=31\\x=-29\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=31\\x=-29\end{cases}}\)
a.\(\Rightarrow\left(x-1\right)^2=-60\cdot\left(-15\right)=900\)
\(\Rightarrow\left(x-1\right)^2=30^2\)
\(\Rightarrow\orbr{\begin{cases}x-1=30\\x-1=-30\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=31\\x=-29\end{cases}}\)
Vậy x=31 hoặc x=-29
Sắp xếp lại theo thứ tự giảm dần của biến:
\(P\left(x\right)=-5x^3-\frac{1}{3}+8x^4+x=8x^4-5x^3+x-\frac{1}{3}\)
\(Q\left(x\right)=x^2-5x-2x^3+x^4-\frac{2}{3}=x^4-2x^3+x^2-5x-\frac{2}{3}\)
\(\Rightarrow P\left(x\right)+Q\left(x\right)=\left(8x^4-5x^3+x-\frac{1}{3}\right)+\left(x^4-2x^3+x^2-5x-\frac{2}{3}\right)\)
\(=\left(8x^4+x^4\right)-\left(5x^3+2x^3\right)+x^2-\left(5x-x\right)-\left(\frac{1}{3}+\frac{2}{3}\right)\)
\(=9x^4-7x^3+x^2-4x-1\)
Câu b tương tự