3. Cho góc nhọn xOy. Từ điểm I trong góc đó kẻ các tia Im // Ox; In // Oy.
a) Hãy chứng tỏ xOy = mIn.
b) Có nhận xét gì về mối quan hệ giữa các cạnh của 2 góc ấy?
Gíup mình với cảm ơn các bạn nhiều!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) -15,5 x 20,8 +2,5 x 9,2 -15,5 x 9,2 + 3,5 x 20,8
=-15,5 x 20,8 + 2,5 x 9,2 + -15,5 x 9,2 +3,5 x 20,8
=[20,8x(-15,5+3,5)]+[9,2x(2,5+-15,5)]
=[20,8x(-12)]+[9,2x(-13)]
=-249,6+-119,6
=-369,2
a) \(\left|2x+1\right|=\left|x+4\right|\Rightarrow\left[{}\begin{matrix}2x+1=x+4\\2x+1=-x-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\3x=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{3}\end{matrix}\right.\)
b) \(\left|2x-1\right|=x+4\Rightarrow\left[{}\begin{matrix}2x-1=x+4\\2x-1=-x-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\3x=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
\(x^{10}=x\)
\(\Rightarrow x^{10}-x=0\)
\(\Rightarrow x\left(x^9-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^9-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^9=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
a) Ta có :
\(27^{27}>27^{26}=\left(27^2\right)^{13}=729^{13}>243^{13}\)
\(\Rightarrow27^{27}>243^{13}\)
\(\Rightarrow-27^{27}< -243^{13}\)
\(\Rightarrow\left(-27\right)^{27}< \left(-243\right)^{13}\)
b) \(\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{8}\right)^{26}=\left(\dfrac{1}{8^2}\right)^{13}=\left(\dfrac{1}{64}\right)^{13}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(-\dfrac{1}{8}\right)^{25}< \left(-\dfrac{1}{128}\right)^{13}\)
c) \(4^{50}=\left(4^5\right)^{10}=1024^{10}\)
\(8^{30}=\left(8^3\right)^{10}=512^{10}< 1024^{10}\)
\(\Rightarrow4^{50}>8^{30}\)
d) \(\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{9}\right)^{12}< \left(\dfrac{1}{27}\right)^{12}\)
\(\Rightarrow\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{27}\right)^{12}\)
a) Ta có :
2727>2726=(272)13=72913>243132727>2726=(272)13=72913>24313
⇒2727>24313⇒2727>24313
⇒−2727<−24313⇒−2727<−24313
⇒(−27)27<(−243)13⇒(−27)27<(−243)13
b) (18)25>(18)26=(182)13=(164)13>(1128)13(81)25>(81)26=(821)13=(641)13>(1281)13
⇒(18)25>(1128)13⇒(81)25>(1281)13
⇒(−18)25<(−1128)13⇒(−81)25<(−1281)13
c) 450=(45)10=102410450=(45)10=102410
830=(83)10=51210<102410830=(83)10=51210<102410
⇒450>830⇒450>830
d) (19)17<(19)12<(127)12(91)17<(91)12<(271)12
⇒(19)17<(127)12⇒(91)17<(271)12