1(5)=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(25^{2x}:5^x=125^2\)
\(\Rightarrow5^{4x}:5^x=\left(5^3\right)^2\)
\(\Rightarrow5^{4x-x}=5^6\)
\(\Rightarrow5^{3x}=5^6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
`@` `\text {Ans}`
`\downarrow`
`a,`
`5.125.25 \div 5^6`
`=`\(5\cdot5^3\cdot5^2\div5^6\)
`=`\(5^{1+3+2-6}=5^{6-6}=5^0=1\)
`b,`
\(2^{14}\div\left(2^6\cdot32\right)\)
`=`\(2^{14}\div\left(2^6\cdot2^5\right)\)
`=`\(2^{14}\div2^{11}=2^3\)
`c,`
`3.3^5\div 27`
`=`\(3\cdot3^5\div3^3\)
`=`\(3^{1+5-3}\)
`=`\(3^3\)
`d,`
\(2^{15}\div\left(2^6\cdot32\right)=2^{15}\div\left(2^6\cdot2^5\right)=2^{15}\div2^{11}=2^4\)
`e,`
\(3^2\cdot27\div81=3^2\cdot3^3\div3^4=3\)
`g,`
\(100\cdot1000\cdot10000-10^9=10^2\cdot10^3\cdot10^4-10^9\)
`=`\(10^9-10^9=0\)
`h,`
\(125^4\div5^9=\left(5^3\right)^4\div5^9=5^{12}\div5^9=5^3\)
(252)x:5x=1252⇒(252)�:5�=1252
625x:5x=1252⇒625�:5�=1252
(625:5)x=1252⇒(625:5)�=1252
125x=1252⇒125�=1252
x=2⇒�=2
252\(x\) : 5\(x\) =1252
5\(^{4x}\) : 5\(^x\) = 56
5\(3x\) = 56
3\(x\) = 6
\(x\) = 2
\(6-\left|x+2\right|=2x+3\\ \Rightarrow\left|x+2\right|=6-\left(2x+3\right)\\ \Rightarrow\left|x+2\right|=6-2x-3\\ \Rightarrow\left|x+2\right|=3-2x\)
\(\left|x+2\right|=\left\{{}\begin{matrix}3-2x\Leftrightarrow x\ge-2\\-3+2x\Leftrightarrow x< -2\end{matrix}\right.\)
Với \(x\ge-2\Rightarrow x+2=3-2x\Rightarrow x+2x=3-2\Rightarrow3x=1\Rightarrow x=\dfrac{1}{3}\left(tm\right)\)
Với \(x< -2\Rightarrow x+2=-3+2x\Rightarrow x-2x=-3-2\Rightarrow-x=-5\Rightarrow x=5\left(ktm\right)\)
Vậy \(x\in\left\{\dfrac{1}{3}\right\}\)
số 24 713 bạn nhé.Vì các số còn lại đều là số chẵn còn số 24 713 là số lẻ
bạn tick cho mik nhé
chúc bạn hok tốt
A=-9,4+2,7+5,4+7,3
A=(2,7+7,3)+5,4-9,4
A=10+5,4-9,4
A=15,4-9,4
A=6
A B C D E F H
a/
Xét tf vuông ABD và tg vuông EBD có
\(\widehat{ABD}=\widehat{EBD}\) (gt)
BD chung
=> tg ABD = tg EBD (Hai yg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => AD=DE
b/
Gọi H là giao của BD và AE
Xét tg ABH và tg EBH có
tg ABD = tg EBD (cmt) => AB=EB
\(\widehat{ABD}=\widehat{EBD}\) (gt)
BH chung
=> tg ABH = tg EBH (c.g.c) => HA=HE (1)
\(\Rightarrow\widehat{AHB}=\widehat{EHB}\) mà \(\widehat{AHB}+\widehat{EHB}=\widehat{AHE}=180^o\)
\(\Rightarrow\widehat{AHB}=\widehat{EHB}=90^o\Rightarrow BD\perp AE\) (2)
Từ (1) và (2) => BD là đường trung trực của AE
c/
Gọi F' là giao của AB và DE
Xét tg vuông F'EB và tg vuông ABC có
\(\widehat{BF'E}=\widehat{BCA}\) (cùng phụ với \(\widehat{ABC}\) )
AB=EB (cmt)
=> tg F'EB = tg ABC (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)
=> BF=BC
Xét tg F'BD và tg CBD có
BF'=BC
\(\widehat{ABD}=\widehat{EBD}\) (gt)
BD chung
=> tg F'BD = tg CBD (c.g.c) => DF' = DC
Mà DF = DC \(\Rightarrow F\equiv F'\) =>A, B, F thẳng hàng
d/
Xét tg BCF có
\(CA\perp BF;FE\perp BC\) => D là trực tâm của tg BCF
\(\Rightarrow BD\perp CF\) (trong tg 3 đường cao đồng quy)
\(1,\left(5\right)=\dfrac{14}{9}\)
14/9 nha