A là số tự nhiên lẻ không chia hết cho 5 . Chứng minh rằng có 1 số chia hết cho A gồm chữ số 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) \(x+y+3xy=1\)
\(\Leftrightarrow3x+3y+9xy=3\)
\(\Leftrightarrow3x+9xy+3y=3\)
\(\Leftrightarrow3x\left(1+3y\right)+1+3y=4\)
\(\Leftrightarrow\left(3y+1\right)\left(3x+1\right)=4\)
\(\Leftrightarrow\left(3x+1\right);\left(3y+1\right)\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-\dfrac{2}{3};-\dfrac{5}{3}\right);\left(0;1\right);\left(-1;-1\right);\left(\dfrac{1}{3};\dfrac{1}{3}\right);\left(-\dfrac{5}{3};-\dfrac{2}{3}\right);\left(1;0\right)\right\}\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(0;1\right);\left(-1;-1\right);\left(1;0\right)\right\}\)
(\(\dfrac{9}{25}\))2 = (\(\dfrac{3^2}{5^2}\)) = (\(\dfrac{3}{5}\))4 \(\ne\) ( \(\dfrac{3}{5}\))-4
a) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\Rightarrow\left(b+d\right)c=\left(a+c\right)d\)
\(\Rightarrow dpcm\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{2a}{2b}=\dfrac{c}{d}=\dfrac{2a+c}{2b+d}=\dfrac{2a-c}{2b-d}\)
\(\Rightarrow\left(2b-d\right)\left(2a+c\right)=\left(2a-c\right)\left(2b+d\right)\)
\(\Rightarrow dpcm\)
c) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}=\dfrac{3a}{3b}=\dfrac{5c}{5d}=\dfrac{3a+5c}{3b+5d}=\dfrac{a-3c}{b-3d}\)
\(\Rightarrow\left(b-3d\right)\left(b-3d\right)=\left(3b+5d\right)\left(a-3c\right)\)
\(\Rightarrow dpcm\)
Đính chính câu c
\(\Rightarrow\left(3a+5c\right)\left(b-3d\right)=\left(3b+5d\right)\left(a-3c\right)\)
\(2\dfrac{3}{x}\) là hỗn số hay là \(2\times\dfrac{3}{x}\) vậy bạn .
= -7/5 . 8/3 - 7/5 . (-2/3)
= -7/5.(8/3 - 2/3)
= -7/5 . 2
= -14/5