GIÚP MÌNH VỚI!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đkxđ \(x-2\ge0\Leftrightarrow x\ge2\)
phương trình đã cho \(\Leftrightarrow\left[\left(x-8\right)\sqrt{x-2}\right]^2=4\)\(\Leftrightarrow\left(x^2-16x+64\right)\left(x-2\right)=4\)
\(\Leftrightarrow x^3-2x^2-16x^2+32x+64x-128=4\)
\(\Leftrightarrow x^3-18x^2+96x-132=0\)
Tới đây bạn bấm máy Casio giải được rồi.
Căn (35 + 12.căn 6)
= căn(27 + 12.căn6 + 8)
= căn(3.căn3 + 2.căn2)²
= 3.căn3 + 2.căn2
\(\sqrt{35+2\sqrt{6^2\times6}}\)=\(\sqrt{8+2\sqrt{8}\sqrt{27}+27}\)=\(\sqrt{\left(2\sqrt{2}+3\sqrt{3}\right)^2}\)=\(2\sqrt{2}+3\sqrt{3}\)
Chịuuuuuuuuuuuuuuuuuuuuuuuuuu
Khó thế đọc bài vẽ ra hoa hết cả mắt mà e học lớp 8 nên cx có biết j đâu
Cho \(xy=1\)và \(x,y>0\)
Tìm \(M_{max}=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
\(M=\frac{x}{x^4+\frac{1}{x^2}}+\frac{x}{y^2+\frac{1}{y^2}}\)
\(M=\frac{x^4}{x^6+1}+\frac{y^3}{y^6+1}\)
Áp dụng BĐT Cauchy
\(x^6+1\ge2x^3=>\frac{x^2}{x^6+1}\le\frac{1}{2}\)
Tương tự \(\frac{y^3}{y^6+1}\le\frac{1}{2}\)
\(=>M\le1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}xy=1\\x=1\\y=1\end{cases}}\Leftrightarrow x=y=1\)
Vậy \(M_{max}=1\)khi \(x=y=1\)
Answer:
Mình chỉ làm câu Đại thôi nhé, còn bài Hình thì nhờ cao nhân khác.
\(A=\frac{x+2\sqrt{x}+1}{x-1}+\frac{x-\sqrt{x}}{x-2\sqrt{x}+1}-\frac{x-2\sqrt{x}}{x-\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2}-\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
Để cho \(A=2\) thì \(\frac{\sqrt{x}+3}{\sqrt{x}+1}=2\Rightarrow\sqrt{x}+3=2\sqrt{x}+2\Rightarrow\sqrt{x}=1\Rightarrow x=1\) (Loại)