cho tam giác ABC có ba góc nhọn, các đường cao AD , Be cắt nhau tại H
c/m tam giác ADC đông dạng vs BEC
c/m HE.HB=AH.HD
c/m F là giao điểm của CH và AB c/m AF.AB=AH.AD
c/m HD/AD+HE/BE+HF/CF =1
c/m CD/BC=CE/BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $MN\parallel BC$ nên theo định lý Talet:
$\frac{MN}{BC}=\frac{AN}{AC}=\frac{AM}{AB}=\frac{1}{2}(1)$
$\Rightarrow N$ là trung điểm $AC$
$NP\parallel AB$ nên theo định lý Talet:
$\frac{NP}{AB}=\frac{CP}{CB}=\frac{CN}{CA}=\frac{1}{2}(3)$
$\Rightarrow P$ là trung điểm $BC$
$\Rightarrow \frac{BP}{BC}=\frac{1}{2}(2)$
Từ $(1); (2)\Rightarrow \frac{MN}{BC}=\frac{BP}{BC}=\frac{1}{2}\Rightarrow MN=BP$
Từ $(1); (3)\Rightarrow \frac{NP}{AB}=\frac{AM}{AB}=\frac{1}{2}$
$\Rightarrow NP=AM$. Mà $AM=BM$ nên $NP=BM$
b.
$MN\parallel BC$ nên $\widehat{ANM}=\widehat{NCP}$ (đồng vị)
$AN=NC$ (do $N$ là trung điểm $AC$)
$MN=PC$ (cùng = BP)
$\Rightarrow \triangle AMN=\triangle NPC$ (c.g.c)
bạn phải nêu rõ 2 đáy của h thang mình mới tính đc
- Ta có: \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)
\(\Rightarrow\left(x^3-1\right)⋮\left(x^2+x+1\right)\)
- Áp dụng hệ quả nhị thức Newton ta có: \(x^n-1⋮x-1\) với \(n\in N\).
- Vì \(n\) không chia hết cho \(3\) \(\Rightarrow n\) có dạng \(3k+1\) hoặc \(3k+2\) \(\left(k\in N\right)\)
- Với \(n=3k+1\) thì:
\(x^{2n}+x^n+1=x^{2\left(3k+1\right)}+x^{3k+1}+1=x^{6k+2}+x^{3k+1}+1=x^{3k+2}\left(x^{3k}-1\right)+x^{3k}\left(x^2+x+1\right)-\left(x^{3k}-1\right)\)
- Do \(\left\{{}\begin{matrix}x^{3k+2}\left(x^{3k}-1\right)⋮\left(x^{3k}-1\right)⋮\left(x^3-1\right)⋮\left(x^2+x+1\right)\\x^{3k}\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\\\left(x^{3k}-1\right)⋮\left(x^3-1\right)⋮\left(x^2+x+1\right)\end{matrix}\right.\)
\(\Rightarrow x^{3k+2}\left(x^{3k}-1\right)+x^{3k}\left(x^2+x+1\right)-\left(x^{3k}-1\right)⋮\left(x^2+x+1\right)\)
hay \(x^{2n}+x^n+1⋮x^2+x+1\) khi \(n=3k+1\left(k\in N\right)\) (1).
- Với \(n=3k+2\) thì:
\(x^{2n}+x^n+1=x^{2\left(3k+2\right)}+x^{3k+2}+1=x^{6k+4}+x^{3k+2}+1=x^{3k+4}\left(x^{3k}-1\right)+x^{3k+2}\left(x^2+x+1\right)-\left(x^{3k+3}-1\right)\)- Do \(\left\{{}\begin{matrix}x^{3k+4}\left(x^{3k}-1\right)⋮\left(x^{3k}-1\right)⋮\left(x^3-1\right)⋮\left(x^2+x+1\right)\\x^{3k+2}\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\\\left(x^{3\left(k+1\right)}-1\right)⋮\left(x^3-1\right)⋮\left(x^2+x+1\right)\end{matrix}\right.\)
\(\Rightarrow x^{3k+4}\left(x^{3k}-1\right)+x^{3k+2}\left(x^2+x+1\right)-\left(x^{3k+3}-1\right)⋮\left(x^2+x+1\right)\)
hay \(x^{2n}+x^n+1⋮x^2+x+1\) khi \(n=3k+2\left(k\in N\right)\) (2).
- Từ (1), (2) ta suy ra đpcm
D , E , F lần lượt là trung điểm của AB , AC , BC
=> DE , DF và EF sẽ lần lượt là các đường trung bình ứng với BC , AC , AB
\(\Rightarrow\left\{{}\begin{matrix}DE=\dfrac{1}{2}BC=\dfrac{1}{2}.14=7\left(cm\right)\\DF=\dfrac{1}{2}AC=\dfrac{1}{2}.10=5\left(cm\right)\\\text{EF}=\dfrac{1}{2}AB=\dfrac{1}{2}.6=3\left(cm\right)\end{matrix}\right.\)