tìm n để n^2 -n +2 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Sử dụng bổ đề: Một số chính phương $x^2$ khi chia 3 dư 0 hoặc 1.
Chứng minh:
Nêú $x$ chia hết cho $3$ thì $x^2\vdots 3$ (dư $0$)
Nếu $x$ không chia hết cho $3$. Khi đó $x=3k\pm 1$
$\Rightarrow x^2=(3k\pm 1)^2=9k^2\pm 6k+1$ chia $3$ dư $1$
Vậy ta có đpcm
-----------------------------
Áp dụng vào bài:
TH1: Nếu $a,b$ chia hết cho $3$ thì hiển nhiên $ab(a^2+2)(b^2+2)\vdots 9$
TH1: Nếu $a\vdots 3, b\not\vdots 3$
$\Rightarrow b^2$ chia $3$ dư $1$
$\Rightarrow b^2+3\vdots 3$
$\Rightarrow a(b^2+3)\vdots 9$
$\Rightarrow ab(a^2+3)(b^2+3)\vdots 9$
TH3: Nếu $a\not\vdots 3; b\vdots 3$
$\Rightarrow a^2$ chia $3$ dư $1$
$\Rightarrow a^2+2\vdots 3$
$\Rightarrow b(a^2+2)\vdots 9$
$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$
TH4: Nếu $a\not\vdots 3; b\not\vdots 3$
$\Rightarrow a^2, b^2$ chia $3$ dư $1$
$\Rightarrow a^2+2\vdots 3; b^2+2\vdots 3$
$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$
Từ các TH trên ta có đpcm.
`#040911`
a,
\(\dfrac{1}{2}\cdot\left(x-4\right)-\dfrac{1}{4}\cdot\left(x-\dfrac{4}{3}\right)=2\cdot\left(x-\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{1}{2}x-2-\dfrac{1}{4}x+\dfrac{1}{3}=2x-1\\\Rightarrow\left(\dfrac{1}{2}x-\dfrac{1}{4}x-2x\right)=2-\dfrac{1}{3}-1\\ \Rightarrow-\dfrac{7}{4}x=\dfrac{2}{3}\\ \Rightarrow x=\dfrac{2}{3}\div\left(-\dfrac{7}{4}\right)\\ \Rightarrow x=-\dfrac{8}{21}\)
Vậy, \(x=-\dfrac{8}{21}\)
b,
\(\dfrac{3}{4}-\left(x-\dfrac{1}{2}\right)^2=-\dfrac{11}{2}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{3}{4}-\left(-\dfrac{11}{2}\right)\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{25}{4}\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\left(\pm\dfrac{5}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{5}{2}\\x-\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}+\dfrac{1}{2}\\x=-\dfrac{5}{2}+\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy, \(x\in\left\{-2;3\right\}\)
c,
\(\dfrac{3}{16}+1\dfrac{1}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{17}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}-\dfrac{3}{16}\\ \Rightarrow\dfrac{17}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\\ \Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\div\dfrac{17}{16}\\ \Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{17}\)
Bạn xem lại đề có sai kh nhỉ?
c) \(\dfrac{3}{16}+\dfrac{1}{\dfrac{1}{16}}\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}\)
\(\Rightarrow16\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}-\dfrac{3}{16}\)
\(\Rightarrow16\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\)
\(\Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}:16\)
\(\Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{256}=\left(\dfrac{3}{16}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{2}{3}=\dfrac{3}{16}\\x-\dfrac{2}{3}=-\dfrac{3}{16}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{16}+\dfrac{2}{3}\\x=-\dfrac{3}{16}+\dfrac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{41}{48}\\x=\dfrac{23}{48}\end{matrix}\right.\)
`#040911`
\(4\cdot\left(\dfrac{1}{2}\right)^3+3\cdot\left(\dfrac{1}{2}\right)^2-2\cdot\left(\dfrac{1}{2}\right)^0\\ =4\cdot\dfrac{1}{8}+3\cdot\dfrac{1}{4}-2\cdot1\\ =\dfrac{4}{8}+\dfrac{3}{4}-2\\ =\dfrac{2}{4}+\dfrac{3}{4}-2\\ =\dfrac{5}{4}-2\\ =-\dfrac{3}{4}\)
4.1/8 + 3. 1/4 - 2. 1
= 4/8 + 3/4 - 2
= 1/2 + 3/4 - 2
= -3 /4
Lời giải:
$\frac{2x-y}{x+y}=\frac{1}{3}$
$\Rightarrow 3(2x-y)=x+y$
$\Leftrightarrow 6x-3y=x+y$
$\Leftrightarrow 5x=4y$
$\Leftrightarrow x=\frac{4}{5}y$. Thay vào biểu thức A:
$A=\frac{\frac{4}{5}y+y}{2.\frac{4}{5}y+y}=\frac{\frac{9}{5}y}{\frac{13}{5}y}=\frac{9}{13}$
bg chi tiết đây bạn nhé. tick cho mình nhé.
Bài giải
a) Phân số chỉ số phần hai lần cửa hàng bán là:
14+27=152841+72=2815(tấm vải)
Lúc đầu tấm vải dài là:
30:1528=56(�)30:2815=56(m)
b) Lần thứ nhất cửa hàng bán:
56:4=14(�)56:4=14(m)
Lần thứ hai cửa hàng bán:
56×27=16(�)56×72=16(m)
Lần thứ ba cửa hàng bán:
56−14−16=26(�)56−14−16=26(m)
Bài giải
a) Phân số chỉ số phần hai lần cửa hàng bán là:
14+27=152841+72=2815(tấm vải)
Lúc đầu tấm vải dài là:
30:1528=56(�)30:2815=56(m)
b) Lần thứ nhất cửa hàng bán:
56:4=14(�)56:4=14(m)
Lần thứ hai cửa hàng bán:
56×27=16(�)56×72=16(m)
Lần thứ ba cửa hàng bán:
56−14−16=26(�)56−14−16=26(m)
Đ/S : 26m
\(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)
vì \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0,\forall x\inℝ\)
\(\Rightarrow B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{4}{9}x-\dfrac{2}{15}=0\Rightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Rightarrow x=\dfrac{9}{15}\)
Vậy \(GTLN\left(B\right)=3\left(tạix=\dfrac{9}{15}\right)\)
\(A=\left(2x+\dfrac{1}{3}\right)^4-1\)
vì \(\left(2x+\dfrac{1}{3}\right)^4\ge0,\forall x\inℝ\)
\(\Rightarrow A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)
Dấu "=" xảy ra khi và chỉ khi
\(2x+\dfrac{1}{3}=0\Rightarrow2x=-\dfrac{1}{3}\Rightarrow x=-\dfrac{1}{6}\)
\(\Rightarrow GTNN\left(A\right)=-1\left(tạix=-\dfrac{1}{6}\right)\)
\(AB=5\left(cm\right)< CD=k^2\)
\(MN=11\left(cm\right)>CD=k^2\)
\(\Rightarrow CD=k^2=9\left(cm\right)\)
Giả sử \(n^2-n+2\) là số chính phương \(\left(n\inℤ^+\right)\)
Đặt \(n^2-n+2=k^2\ge0\left(k\inℕ\right)\)
\(\Leftrightarrow4n^2-4n+8=4k^2\)
\(\Leftrightarrow4n^2-4n+1+7=4k^2\)
\(\Leftrightarrow4k^2-\left(2n-1\right)^2=7\)
\(\Leftrightarrow\left(2k+2n-1\right)\left(2k-2n+1\right)=7\)
vì \(7=1.7>0;n\inℤ^+\)
\(\Leftrightarrow\left(2k+2n-1\right);\left(2k-2n+1\right)\in\left\{1;7\right\}\)
\(TH1:\left\{{}\begin{matrix}2k+2n-1=1\\2k-2n+1=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4n-2=-6\\2k-2n+1=7\end{matrix}\right.\) \(\Leftrightarrow n=-1\left(không.thỏa\right)\)
\(TH2:\left\{{}\begin{matrix}2k+2n-1=7\\2k-2n+1=1\end{matrix}\right.\) \(TH2:\left\{{}\begin{matrix}4n-2=6\\2k-2n+1=1\end{matrix}\right.\) \(\Leftrightarrow n=2\left(thỏa\right)\)
Vậy \(n=2\) thỏa đề bài