Giúp mình với. Cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Ta có \(x^2+1=x^2+xy+yz+zx\) (vì \(xy+yz+zx=1\))
\(=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)
\(\Rightarrow\sqrt{x^2+1}=\sqrt{\left(x+y\right)\left(x+z\right)}\)
Áp dụng bất đẳng thức Cô-si cho hai số dương \(x+y\)và \(x+z\), ta có:
\(\sqrt{\left(x+y\right)\left(x+z\right)}\le\frac{x+y+x+z}{2}=\frac{2x+y+z}{2}=x+\frac{y+z}{2}\)
\(\Leftrightarrow\sqrt{x^2+1}\le x+\frac{y+z}{2}\)
Tương tự, ta có: \(\sqrt{y^2+1}\le y+\frac{z+x}{2};\sqrt{z^2+1}\le z+\frac{x+y}{2}\)
Công vế theo vế của từng bất đẳng thức, ta có:
\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\le x+\frac{y+z}{2}+y+\frac{z+x}{2}+z+\frac{x+y}{2}\)
\(=x+y+z+\frac{y+z+z+x+x+y}{2}\)\(=x+y+z+\frac{2\left(x+y+z\right)}{2}=x+y+z+x+y+z=2\left(x+y+z\right)\)
Như vậy ta có điều phải chứng minh.
Bài 4: Mình không vẽ hình vì nó bảo duyệt, không hiện được câu trả lời lên. Với lại mình sẽ chia bài này làm 3 câu trả lời cho 3 câu a,b,c cho ngắn. Dài quá nó cũng bảo duyệt.
a) Xét đường tròn (O) có CA là tiếp tuyến tại A của (O) \(\Rightarrow CA\perp OA\)tại A \(\Rightarrow CA\perp BA\)tại A \(\Rightarrow\Delta ABC\)vuông tại A
Xét \(\Delta ABE\)nội tiếp đường tròn (O) có đường kính AB \(\Rightarrow\Delta ABE\)vuông tại E \(\Rightarrow AE\perp BC\)tại E \(\Rightarrow\)AE là đường cao của \(\Delta ABC\)
Xét \(\Delta ABC\)vuông tại A có đường cao AE \(\Rightarrow CA^2=CE.CB\left(htl\right)\)(đpcm)
Không vẽ hình đc , sợ duyệt
a) Lấy \(E\)trên \(BC\)sao cho \(CDE=ADB\)
Tam giác \(CDE\)= tam giác \(ADB\left(g.g\right)\)
Tỉ số các đường cao tương đương với ứng bằng tỉ số đóng dạng :
\(\frac{DH}{DK}=\frac{CE}{AB}=\frac{x}{z}=\frac{CE}{c}=\frac{c}{z}=\frac{CE}{x}\left(1\right)\)
Tương tự \(\frac{b}{y}=\frac{BE}{x}\left(2\right)\)
Từ (1) và (2) ta suy ra : \(\frac{b}{y}+\frac{c}{z}=\frac{BE+CE}{x}=\frac{a}{x}\)
b) Xét S \(=\frac{a}{x}+\left(\frac{b}{y}+\frac{c}{z}\right)=\frac{a}{x}+\frac{a}{x}=\frac{2a}{x}\). Do đó :
S nhỏ nhất \(\frac{a}{x}\)nhỏ nhất = x lớn nhất = \(D=M\)( M là điểm chính giữa của cung BC không chứa A )
HT
Mệt
Mình xin không vẽ hình vì nó bảo duyệt, không lên được. Với lại tớ sẽ chia bài này thành 5 câu trả lời (cho 3 câu a,b,c còn câu d chia làm 2 phần nữa) cho ngắn, dài quá nó cũng bảo duyệt.
a) Xét đường tròn (O) có 2 tiếp tuyến tại A và B cắt nhau tại M (gt)
\(\Rightarrow MA=MB\)\(\Rightarrow\)M nằm trên đường trung trực của đoạn AB. (1)
Mà \(OA=OB\left(=R\right)\)\(\Rightarrow\)O nằm trên đường trung trực của đoạn AB. (2)
Từ (1) và (2) \(\Rightarrow\)OM là trung trực của đoạn AB, mà H là giao điểm của OM và AB \(\Rightarrow OM\perp AB\)tại H (đpcm)
c) Xét \(\Delta ABD\)có (O) là đường tròn ngoại tiếp, AD là đường kính \(\Rightarrow\Delta ABD\)vuông tại B \(\Rightarrow AB\perp GD\)tại B
Mà \(OM\perp AB\left(cmt\right)\)\(\Rightarrow OM//GD\left(\perp AB\right)\)
Vì AD là đường kính của (O) \(\Rightarrow\)O là trung điểm của AD.
Xét \(\Delta ADG\)có O là trung điểm AD, \(OM//GD\)và \(M\in AG\)\(\Rightarrow\)M là trung điểm AG \(\Rightarrow AM=MG\left(đpcm\right)\)
Trên mỗi hình vuông con, kích thước 2x2 chỉ có không quá 1 số chia hết cho 2, cũng vậy, có không quá 1 số chia hết cho 3
Lát kín bảng bởi 25 hình vuông, kích thước 2x2, có nhiều nhất 25 số chia hết cho 2, có nhiều nhất 25 số chia hết cho 3. Do đó, có ít nhất 50 số còn lại không chia hết cho 2, cũng không chia hết cho 3. Vì vậy, chúng phải là một trong các số 1,5,7.
Từ đó, theo nguyên lý Dirichlet, có một số xuất hiện ít nhất 17 lần.
\(B=\frac{1}{\sqrt{x}+3}-\frac{\sqrt{x}+1}{3-\sqrt{x}}-\frac{2\sqrt{x}}{x-9}\)
\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}-3+x+4\sqrt{x}+3-2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-3}\).