Nếu độ dài 3 cạnh của tam giác là các số nguyên dương liên tiếp và chu vi của tam giác nhỏ hơn hoặc bằng 100, thì có bao nhiêu tam giác như vậy? Có bao nhiêu tam giác vuông?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2+2x+4\right)\)
\(=x^3-8-\left(x^3+2x^2+4x+2x^2+4x+8\right)\)
\(=x^3-8-x^3-4x^2-8x-8=-4x^2-8x-16\)
\(\left(x-2\right)^2+\left(x-1\right)\left(x+5\right)\)
\(=x^2-4x+4+x^2+5x-x-5\)
\(=2x^2-1\)
a: \(x^2+4x+4=\left(x+2\right)^2\)
b: \(9x^2+6x+1=\left(3x+1\right)^2\)
c: \(x^2+\left(-4y^2\right)=\left(x-2y\right)\left(x+2y\right)\)
\(\left(x+2y\right)^3-x^2+4y^2\)
\(=\left(x+2y\right)^3-\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x+2y\right)\left[\left(x+2y\right)^2-\left(x-2y\right)\right]\)
\(=\left(x+2y\right)\left(x^2+4xy+4y^2-x+2y\right)\)
Đa thức không phân tích được thành nhân tử. Bạn xem lại nhé.
Ta có: AB//CD
=>\(\widehat{BAD}+\widehat{ADC}=180^0\)
=>\(2\cdot\left(\widehat{KAD}+\widehat{KDA}\right)=180^0\)
=>\(\widehat{KAD}+\widehat{KDA}=90^0\)
=>ΔKAD vuông tại K
=>\(\widehat{AKD}=90^0\)
Gọi vận tốc riêng của ca là x ( x > 0 )
vận tốc ca nô xuôi dòng : x + 4 km/h
vận tốc ca nô ngược dòng : x - 4 km/h
Thời gian đi xuôi A đến B : \(\dfrac{30}{x+4}\)giờ
Thời gian đi từ B ngược về một điểm cách B 20 km nên ta có : \(\dfrac{20}{x-4}\)giờ
Tổng thời gian đi hết 2h30p = 5/2 h
Ta có pt \(\dfrac{30}{x+4}+\dfrac{20}{x-4}=\dfrac{5}{2}\Leftrightarrow x=20\)km/h
Gọi \(x;x+1;x+2\) lần lượt là các cạnh của ta giác \(\left(x\inℤ^+\right)\)
Theo đề bài ta có :
\(x+x+1+x+2\le100\)
\(\Rightarrow3x+3\le100\)
\(\Rightarrow x\le\dfrac{97}{3}\)
\(\Rightarrow x\in\left\{1;2;...32\right\}\) \(\left(x\inℤ^+\right)\)
Nên sẽ có 33 tam giác thỏa mãn đề bài.
Để có tam giác vuông khi :
\(x^2+\left(x+1\right)^2=\left(x+2\right)^2\left(Pitago\right)\)
\(\Rightarrow x^2+x^2+2x+1=x^2+4x+4\)
\(\Rightarrow x^2-2x-3=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=3\left(nhận\right)\end{matrix}\right.\) \(\left(a-b+c=0\right)\)
Vậy có 1 tam giác vuông có các cạnh lần lượt là \(3;4;5\)
x\(\ne\)1(vì 1+2=3)