Cho \(x>0;y>0;t>0\)
Chứng minh rằng : Nếu \(\frac{\sqrt{xy}+1}{\sqrt{y}}=\frac{\sqrt{yt}+1}{\sqrt{t}}=\frac{\sqrt{xt}+1}{\sqrt{x}}\)
Thì \(x=y=t\) Hoặc \(xyt=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Dãy trên nếu xếp theo thứ tự tăng dần :
\(2\sqrt{6};\sqrt{29};4\sqrt{2};3\sqrt{5}\)
b ) Dãy trên nếu xếp theo thứ tự tăng dần :
\(\sqrt{38};2\sqrt{14};3\sqrt{7};6\sqrt{2}\)
Làm thế này có đúng ko?
Giải:
a, \(3\sqrt{5}=\sqrt{3^2.5}==\sqrt{9.5}=\sqrt{45}\)
\(2\sqrt{6}=\sqrt{2^2.6}=\sqrt{4.6}=\sqrt{24}\)
\(4\sqrt{2}=\sqrt{4^2.2}=\sqrt{16.2}=\sqrt{32}\)
Vì: \(\sqrt{24}< \sqrt{23}< \sqrt{32}< \sqrt{45}\)
Nên ta sắp xếp được: \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)
b, \(6\sqrt{2}=\sqrt{6^2.2}=\sqrt{36.2}=\sqrt{72}\)
\(3\sqrt{7}=\sqrt{3^2.7}=\sqrt{9.7}=63\)
\(2\sqrt{14}=\sqrt{2^2.14}=\sqrt{4.14}=\sqrt{56}\)
Vì: \(\sqrt{38}< \sqrt{56}< \sqrt{63}< \sqrt{72}\)
Nên ta sắp xếp được: \(\sqrt{38}< 2\sqrt{14}< 3\sqrt{7}< 6\sqrt{2}\)
cái này mik biết nè
vì a,b,c là 3 cạnh tam giác
=> \(a,b,c\in\left[0;\frac{1}{2}\right]\)
=> \(a+b^2\le\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\Rightarrow\sqrt{a+b^2}\le\sqrt{\frac{3}{4}}< 1\)
=> \(\frac{b}{\sqrt{a+b^2}}>b\)
tương tự mấy cái kia rồi + vào thì cậu có cả biểu thức >a+b+c=1
còn ý 2 thì nht nhé
ta cần chứng minh bất đẳng thức
\(\frac{b}{\sqrt{a+b^2}}< \frac{2b}{a+b+c}\Leftrightarrow\sqrt{a+b^2}>\frac{1}{2}\)
ta có \(\left(b-\frac{1}{2}\right)^2\ge0\Rightarrow a+b^2>a+b-\frac{1}{4}>\frac{a+b+c}{2}-\frac{1}{4}=\frac{1}{4}\Rightarrow\sqrt{a+b^2}>\frac{1}{4}\)
=> bất đẳng thức cần chứng minh luôn đúng> Tương tự mấy cái kia rồi cậu tự + vào thì nó sẽ ra điều phải chứng minh
\(=\frac{5}{3}\cdot\frac{7}{5}\cdot\frac{6}{5}==\frac{5\cdot7\cdot6}{3\cdot5\cdot5}=\frac{14}{5}\)
\(\sqrt{2\frac{7}{9}\cdot}\sqrt{1\frac{24}{25}}\cdot\sqrt{\frac{36}{25}}\)
\(\Leftrightarrow\sqrt{\frac{25}{9}}\cdot\sqrt{\frac{49}{25}}\cdot\sqrt{\frac{36}{25}}\)
\(\Leftrightarrow\frac{5}{3}\cdot\frac{7}{5}\cdot\frac{6}{5}\)\(=\frac{5\cdot7\cdot6}{3\cdot5\cdot5}=\frac{210}{75}=\frac{14}{5}\)