cho các cặp số thực (x;y) thỏa mãn :\(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\)
Hãy tìm cắp số có tổng \(x+2y\)lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo bài ra ta có: \(x^2+y^2+z^2=xyz\Rightarrow\frac{x^2+y^2+z^2}{xyz}=1.\)(vì x.y.z>o)
\(\Rightarrow\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=1\)
mặt khác ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a+b\right)^2\ge4ab\) (với a>0;b>0)
\(\Leftrightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) (*)
Áp dụng bài toán (*) ta có: \(\frac{1}{x^2+yz}\le\frac{1}{4}\left(\frac{1}{x^2}+\frac{1}{yz}\right)\) \(\Rightarrow\frac{x}{x^2+yz}\le\frac{1}{4}\left(\frac{x}{x^2}+\frac{x}{yz}\right)\)
tương tự ta đc: \(\frac{y}{y^2+xz}\le\frac{1}{4}\left(\frac{y}{y^2}+\frac{y}{xz}\right)\) ; \(\frac{z}{z^2+xy}\le\frac{1}{4}\left(\frac{z}{z^2}+\frac{z}{xy}\right)\)
\(\Rightarrow A\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+1\right)\) (vì \(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=1\))
mà \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+xz}{xyz}\le\frac{x^2+y^2+z^2}{xyz}=1\)
\(\Rightarrow A\le\frac{1}{4}\left(1+1\right)=\frac{1}{2}\)
Vậy GTLN của A là 1/2 khi x=y=z
Tôi cũng có bài khó giống ý hệt bạn,vậy bạn có hướng làm chưa
Ta có p^2-p=q^2-3q+2 <=> p(p-1)=(q-1)(q-2) (*)
Từ (*) suy ra p|(q-1)(q-2). Do p là snt nên p|(q-1) hoặc p|(q-2)
+) Xét p|(q-1). Đặt q=kp+1 (k E N*) thay vào (*):
kp(kp-1)=p(p-1) <=>k(kp-1)=p-1 <=> pk^2 -k-p+1=0.<=>(p-1)[p(k+1)-1]=0
=>k=1 (Do p(k+1)-1>0).
Lúc này q=p+1>=3. Do vậy p=2. q=3 (Do p;q nguyên tố) suy ra p^2+q^2=13 là snt
Xét p|(q-2) đặt q=tp+2 (t E N*) . Thay vào (*) biến đổi tương tự ta được . (t+1)[p(k-1)+1]=0 (vô lý nên loại)
Vậy đpcm
p2 - q2 = p - 3q + 2
4p2 - 4q2 = 4p - 12q + 8
4p2 - 4p + 1 = 4q2 - 12q + 9
(2p - 1)2 = (2q - 3)2
Mà 2p - 1 >0(p nguyên tố);2q - 3 >0(q nguyên tố)
Do đó 2p - 1 = 2q - 3 <=> p + 1 = q
Ta có q > 3 (vì p > 2) nên q lẻ, do đó p chẵn
=> p = 2. Nên q = p + 1 = 3
Vậy p2 + q2 = 22 + 32 = 4 + 9 = 13 là số nguyên tố
TH 1: \(x^2+y^2< 1\)
\(\Rightarrow\hept{\begin{cases}|x|< 1\\|y|< 1\end{cases}}\)
\(\Rightarrow S=x+2y\le\sqrt{2\left(x^2+y^2\right)}+y< 1+\sqrt{2}\left(1\right)\)
TH 2: \(x^2+y^2>1\)
\(\Rightarrow x^2-x+y^2-y\le0\)
\(\Leftrightarrow\left(S-2y\right)^2-\left(S-2y\right)+y^2-y\le0\)
\(\Leftrightarrow5y^2+\left(1-4S\right)y+S^2-S\le0\)
\(\Rightarrow\Delta=\left(1-4S\right)^2-4.5.\left(S^2-S\right)\ge0\)
\(\Leftrightarrow S\le\frac{5+\sqrt{10}}{2}\left(2\right)\)
Từ (1) và (2) suy ra được GTLN của S
PS: S là đặt cho nó gọn nhé