K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2018

\(=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2}=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}=\frac{x+y+z}{2}\)

4 tháng 11 2018

f(x) = x4 + ax3 + b ⋮ x2 - 1

=> x4 + ax3 + b = ( x2 - 1 ) . Q

Vì đẳng thức đúng với mọi x

+) Đặt x = 1

<=> f(1) = 1 + a + b = 0

<=> f(1) = a + b = -1 (1)

+) Đặt x = -1

<=> f(-1) = 1 - a + b = 0

<=> f(-1) = a - b = 1 (2) 

Từ (1) và (2) ta có tổng và hiệu của a và b

a là : ( -1 + 1 ) : 2 = 0

b là : ( -1 - 1 ) : 2 = -1

Vậy a = 0; b = -1

4 tháng 11 2018

ta có: \(T=\frac{a^2}{\left(a-b\right).\left(a+b\right)-c^2}+\frac{b^2}{\left(b-c\right).\left(b+c\right)-a^2}+\frac{c^2}{\left(c-a\right).\left(c+a\right)-b^2}\)

\(T=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)

mà a + b + c = 0 => b + c = -a => b2 + 2bc + c2 = a => a2 - b2 - c2 = 2bc

tương tự như trên, ta có: b2  - c2 - a2 = 2ac; c2 - a2 - b2 = 2ab

\(\Rightarrow T=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Lại có: a+b+c = 0 => a3 + b3 + c3 = 3abc

\(\Rightarrow T=\frac{3abc}{2abc}=\frac{3}{2}\)

4 tháng 11 2018

khó đọc quá vậy

4 tháng 11 2018

A B M C D E F H O O' S

a) Gọi O và O' theo thứ tự là tâm của 2 hình vuông AMCD và BMEF. Nối D và F với H.

Xét \(\Delta\)AME và \(\Delta\)CMB có: AM=CM; ^AME = ^CMB (=900); ME=MB

=> \(\Delta\)AME = \(\Delta\)CMB (c,g,c) => ^AEM = ^CBM (2 góc tương ứng)

Lại có: ^AEM + ^MAE = 900 => ^CBM + ^MAE = 900 hay ^HBA + ^HAB = 900 

=> ^AHB = 900 => ^EHB = 900 => \(\Delta\)EHB vuông đỉnh H

Do O' là trung điểm BE (Theo t/c hình vuông) => HO' = O'E = O'B

Mà O'E = O'B = O'M = O'F nên HO' = O'M = O'F => \(\Delta\)MHF vuông đỉnh H

hay ^MHF = 900 . C/m tương tự: ^MHD = 900 => ^MHF + ^MHD = 1800 

=> ^DHF = 1800 => 3 điểm D;H;F thẳng hàng (đpcm).

b) Gọi giao điểm của BE và AC là S. Dễ thấy: \(\Delta\)ASB vuông cân tại S (^CAM = ^EBM = 450). Ta có AB cố định, cho nên S cũng cố định. Ta sẽ chứng minh DF luôn đi qua S hay D;S;F thẳng hàng.

Xét \(\Delta\)DMF: O là trung điểm DM; O' là trung điểm MF => OO' là đường trung bình \(\Delta\)DMF => OO' // DF (1)

Ta thấy: ^MOS = ^MO'S = 900 (T/c 2 đường chéo hình vuông). Kết hợp với ^OSO' = 900

=> Tứ giác MO'SO là hình chữ nhật => SO // MO' và SO = MO' => SO // FO' và SO = FO'

Từ đó có tứ giác SOO'F là hình bình hành OO' // FS     (2)

Từ (1) và (2) => 3 điểm D;S;F thẳng hàng => ĐPCM.

21 tháng 2 2020

cm AE vuong goc voi BC

4 tháng 11 2018

\(\left(x+1\right)^2+\left(2x-1\right)\left(2x+1\right)-5x\left(x-1\right)=7\)

\(x^2+2x+1+4x^2-1-5x^2+5x=7\)

\(\left(x^2+4x^2-5x^2\right)+\left(1-1\right)+\left(2x+5x\right)=7\)

\(7x=7\)

\(x=1\)