Cho \(x^2+y^2-xy=x+y-1\)
Tính giá trị của M biết \(M=\left(x+y\right)^{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D E M K
a) Qua A kẻ đường thẳng vuông góc với tia DE tại K.
Xét tứ giác AHDK: ^AHD = ^HDK = ^AKD = 900; AH=DH => AHDK là hình vuông
=> ^HAK = 900 và AH=AK
Ta có: ^BAH + ^HAC = ^EAK + ^HAC = 900 => ^BAH = ^EAK
Xét \(\Delta\)AHB và \(\Delta\)AKE có: ^AHB = ^AKE (=900); AH=AK; ^BAH = ^EAK
=> \(\Delta\)AHB = \(\Delta\)AKE (g.c.g) => AB=AE (2 cạnh tương ứng) (đpcm).
b) Xét \(\Delta\)ABE vuông tại A có trung tuyến AM => AM=BE/2. Tương tự: DM=BE/2
=> AM=DM => \(\Delta\)MAH = \(\Delta\)MDH (c.c.c) => ^AHM = ^DHM = ^AHD/2 = 450.
ĐS...
Bạn tự xét dấu "=" nhé, mình chỉ hướng dẫn cách tách thôi
a) \(A=5x^2-4x+1\)
\(A=5\left(x^2-\frac{4}{5}x+\frac{1}{5}\right)\)
\(A=5\left[x^2-2\cdot x\cdot\frac{2}{5}+\left(\frac{2}{5}\right)^2+\frac{1}{25}\right]\)
\(A=5\left[\left(x-\frac{2}{5}\right)^2+\frac{1}{25}\right]\)
\(A=5\left(x-\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\forall x\)
b) Tương tự đặt -9 ra ngoài rồi khai triển như câu a)
c) \(F=-2x^2-y^2+2xy+4x-40\)
\(F=-x^2-x^2-y^2+2xy+4x-40\)
\(F=-\left(x^2-2xy+y^2\right)-\left(x^2-4x+4\right)-36\)
\(F=-36-\left(x-y\right)^2-\left(x-2\right)^2\)
\(F=-36-\left[\left(x-y\right)^2+\left(x-2\right)^2\right]\le-36\forall x;y\)
\(A+3=\left(1+\frac{x+y}{z}\right)+\left(1+\frac{x+z}{y}\right)+\left(1+\frac{y+z}{x}\right)\)
\(A+3=\left(x+y+z\right).\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{x}\right)\)
\(A+3=\left(x+y+z\right).0=0\Rightarrow A=-3\)
Có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\)
\(\Rightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{3}\)
\(\Rightarrow3.\left(xy+yz+zx\right)=xyz\)(1)
Lại có: \(x+y+z=3\)
\(\Rightarrow\left(x+y+z\right)^2=3^2\)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=9\)
Mà: \(x^2+y^2+z^2=17\)
\(\Rightarrow17+2xy+2yz+2xz=9\)
\(\Rightarrow2xy+2yz+2xz=-8\)
\(\Rightarrow xy+yz+zx=-4\)(2)
Thay (2) vào (1) ta có:
\(3.\left(-4\right)=xyz\)
\(xyz=-12\)
Vậy \(xyz=-12\)
Tham khảo nhé~
\(M=x^2-2x+2014\)
\(M=x^2-2\cdot x\cdot1+1^2+2013\)
\(M=\left(x-1\right)^2+2013\ge2013\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Mmin = 2013 khi và chỉ khi x = 1
ez
\(x^2+y^2-xy=x+y-1\)
\(\Leftrightarrow2\left(x^2+y^2-xy\right)=2\left(x+y-1\right)\)
\(\Leftrightarrow2x^2+2y^2-2xy=2x+2y-2\)
\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y+2=0\)
\(\Leftrightarrow x^2+x^2+y^2+y^2-2xy-2x-2y+1+1=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=0\)
Vì mũ chẵn luôn lớn hơn hoặc bằng 0
\(\Rightarrow\hept{\begin{cases}x-y=0\\x-1=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}1-1=0\left(tm\right)\\x=1\\y=1\end{cases}}}\)
\(\Rightarrow M=\left(1+1\right)^{10}=2^{10}=1024\)