Cho tam giác ABC có AC lớn hơn AB nội tiếp đường tròn O bán kính R . Đường phân giác trong và ngoài góc A cắt BC ở D và E sao cho AD = AE . Tính AB^2 + AC^2 theo R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu này khá khó mình ko biết làm có đúng ko nữa
để \(\left(d1\right)\perp\left(d2\right)\)
\(\Leftrightarrow\)\(\left(k-3\right).\left(2k+1\right)=-1\)
\(\Leftrightarrow2k^2+k-6k-3+1=0\)
\(\Leftrightarrow2k^2-5k-2=0\)
\(\Leftrightarrow k^2-\frac{5}{2}k-1=0\)
\(\Leftrightarrow\)\(k^2-2.k.\frac{5}{4}+\frac{25}{16}-\frac{25}{16}-1=0\)
\(\Leftrightarrow\left(k-\frac{5}{4}\right)^2-\frac{41}{16}=0\)
\(\Leftrightarrow\left(k-\frac{5}{4}-\frac{\sqrt{41}}{4}\right)\left(k-\frac{5}{4}+\frac{\sqrt{41}}{4}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}k-\frac{5}{4}-\frac{\sqrt{41}}{4}=0\\k-\frac{5}{4}+\frac{\sqrt{41}}{4}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}k=\frac{5+\sqrt{41}}{4}\\k=\frac{5-\sqrt{41}}{4}\end{cases}}\) ( Thỏa mãn \(k\ne3;k\ne\frac{-1}{2}\))
vậy \(k=\frac{5-\sqrt{41}}{4}\) ; \(k=\frac{5+\sqrt{41}}{4}\)
Từ M lần lượt kẻ MH vuông góc với AB, MK vuông góc với BC, MN vuong góc với DC
dễ dàng cm được các tứ giác HMKB,KMNC,AHND là hình chữ nhật
Sử dụng định lí Py-ta-go có
MA2=AH2+HM2
MC2=MK2+KC2
Ta luôn có AH=DN,MH=BK,KC=MN ( tính chất hình chữ nhật)
Ta có MA2+MC2=AH2+HM2+MK2+KC2=BK2+MK2+MN2+DN2=MB2+MD2
Thay số được
MC=\(\sqrt{4012013}\)