Cho hình bình hành ABCD có AD=2AB,\(\widehat{A}=60^o\).Gọi E,F lần lượt là trung điểm của BC và AD.
a)Chứng minh \(AE\perp BF\)
b)Chứng minh tứ giác BFDC là hình thang cân
c)Lấy M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật. Suy ra M,E,D thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E I
a) D là trung điểm AB, E là trung ddieermr AC
=> DE là đường trung bình của tam giác ABC
=> DE//=1/2BC
=> BDEC là hình thang
b) Xét tứ giác AIBE có hai đường chéo AI và BE cắt nhau tại D
Mà D là trung điểm của IE và D là trung điểm AB
=> AIBE là hình bình hành
c)Điều kiện: hình bình hành AIBE là hình chữ nhật : \(\widehat{BEA}=90^o\)
hay \(BE\perp AC\)=> BE là đường cao của tam giác ABC
mà BE là trung tuyến của tam giác ABC vì E là trung điểm AC
=> tam giác ABC cân tại B
Câu hỏi của Phạm Thị Hường - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài làm ở link này nhé!
Đề bài sai vì:
AC=CD là đương nhiên vì là hai cạnh đối nhau của hbh (t/c hbh)
=> Dữ kiện đúng phải là AB=BC hoặc AB=AD
vì đa thức chia bậc 2 nên đa thức dư bậc 1 có dạng ax + b
Ta có: \(x^{2017}+x^{2018}=\left(x^2-1\right)Q\left(x\right)+ax+b\left(\forall x\right)\) ( Q(x) là thương )
\(\Rightarrow x^{2017}+x^{2018}=\left(x-1\right)\left(x+1\right)Q\left(x\right)+ax+b\left(\forall x\right)\)(1)
Thay lần lượt x = 1 và x = -1 vào (1), ta có:
\(\hept{\begin{cases}a+b=2\\-a+b=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}}\)
Vậy dư của phép chia trên là \(ax+b=x+1\)
Gọi A(x), B(x) lần lượt là thương của f(x) khi chia cho x+1, x+2
Ta có: f(x) =A(x) (x+1) +4 => f(-1)=4
f(x) =B(x) (x+2)+3=> f(-2)=3
Gọi C(x) là thương của f(x) khi chia cho x^2+3x+2 có phần dư là ax+b
f(x)=C(x) (x^2+3x+2)+ax+b => f(-1)=C(x).0-a+b=4 => -a+b=4(1)
f(-2)=-2a+b=3 (2)
Từ (2) và (3) suy ra a=1, b=5 =>phần dư cần tìm x+5
\(f\left(1\right)=\left(1^2-1-1\right)^{100}+\left(1^2+1-1\right)^{100}-2=\left(-1\right)^{100}+1^{100}-2=1+1-2=0\)
\(\Rightarrow f\left(x\right)⋮\left(x-1\right)\)(1)
\(f\left(-1\right)=\left[\left(-1\right)^2-\left(-1\right)-1\right]^{100}+\left[\left(-1\right)^2+\left(-1\right)-1\right]^{100}-2\)
\(=1^{100}+\left(-1\right)^{100}-2=1+1-2=0\)
\(\Rightarrow f\left(x\right)⋮\left(x+1\right)\)(2)
Mà x - 1 và x + 1 không có nhân tử chung khác 1 (3)
Từ (1), (2) và (3) \(\Rightarrow f\left(x\right)⋮\left[\left(x-1\right)\left(x+1\right)\right]\Rightarrow f\left(x\right)⋮\left(x^2-1\right)\)
B A M E F D C 1 60 độ
a) - Vì ABCD là hình bình hành(gt)
\(\Rightarrow BC //AD\)và BC=AD
Mà \(E\in BC,F\in AD\)và \(BE=\frac{1}{2}BC,\text{AF}=\frac{1}{2}AD\)(gt)
Nên\(BE//\text{AF}\)và BE=AF
=> ABEF là hình bình hành (1)
Mặt khác AD=2AB(gt)
=>\(AB=\frac{AD}{2}\)
\(\text{AF}=\frac{AD}{2}\left(gt\right)\)
Nên AB=AF(2)
Từ (1) và (2) => ABEF là hình thoi
=> \(AE\perp BF\)
b) Ta có BC//FD(BC//AD,F thuộc AD)
=> BCDF là hình thang (3)
- Vì ABCD là hình bình hành(gt)
Nên \(\widehat{BAD}=\widehat{C}=60^o\)(4)
- Ta có : \(\widehat{B\text{AF}}+\widehat{ABE}=180^0\)(Trong cùng phía,BC//AD)
\(\widehat{ABE}=180^0-\widehat{B\text{AF}}\)
\(\widehat{ABE}=180^o-60^o=120^o\)
Mà ABEF là hình thoi
=> \(\widehat{B_1}=\widehat{\widehat{\frac{ABE}{2}}=\frac{120^o}{2}=60^o}\)(5)
Từ (4) và (5) => \(\widehat{C}=\widehat{B_1}\)(6)
Từ (3) và (6)
=> BCDF là hình thang cân
c) Vì ABCD là hình bình hành(gt)
Nên AB//CD và AB=CD
Mà M thuộc AB và AB=BM(M đối xứng với A qua B)
=> B là trung điểm của AB
Nên BM//CD và BM=CD
=> BMCD là hình bình hành (7)
- Xét \(\Delta ABF\)có ;
AB=AF(cmt)
=> \(\Delta ABF\)cân tại A
Mà \(\widehat{B\text{AF}}=60^o\)(gt)
Nên \(\Delta ABF\)đều
=> AB=BF=AF
- Xét \(\Delta ABD\)có:
BF là đường trung tuyến ứng với AD (FA=FD)
\(BF=\frac{1}{2}AD\)(BF=FA mà \(FA=\frac{1}{2}AD\))
Nên \(\Delta ABD\)vuông tại B
=> \(\widehat{MBD}=90^0\)(8)
Từ (7) và (8) =>BMCD là hình chữ nhật
Mà E là trung điểm của BC(gt)
Nên E là trung điểm của MD
Hay E,M,D thẳng hàng
Câu hỏi của Yaden Yuki - Toán lớp 8 - Học toán với OnlineMath Em tham khảo bài làm ở link này nhé!