Không cần giải hết ạ T^T Giải đc 1 bài là em cảm kích lắm rùi
Bài 1: Cho a,b,c là 3 số dương. Chứng minh rằng:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq\frac{a+b+c}{2}\)
Bài 2:
a) Cho x>0, y>0 thỏa mãn \(x^2+y^2=4\). Tìm giá trị lớn nhất của biểu thức:
\(P=\frac{xy}{x+y+2}\)
b) Cho p là số nguyên tố (p>2). Chứng minh rằng số 2/p chỉ có thể biểu diễn dưới dạng duy nhất \(\frac{2}{p}=\frac{1}{x}+\frac{1}{y}\)
(Trong đó x, y là các số nguyên dương phân biệt)
B1 :
Áp dụng bđt cosi ta có : a^2/b+c + b+c/4 >= \(2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}\) = 2. a/2 = a
Tương tự b^2/c+a + c+a/4 >= b
c^2/a+b + a+b/4 >= c
=> VT + a+b+c/2 >= a+b+c
=> VT >= a+b+c/2 = VP
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
k mk nha