CMR : 1=0
Hộ mik cái
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do AO là đường trung tuyến của tam giác ABC :
=) OB=OC =) O là trung điểm của BC
Và OD=OA =) O là trung điểm của AD
=) 2 đường chéo AD và BC cắt nhau tại trung điểm O
=) Tứ giác ABDC là hình bình hành (1)
Do AB \(\perp\)AC tại A =) \(\widehat{BAC}\)= 900 (2)
Từ (1) và (2) =) ABDC là hình chữ nhật
b) Do BH\(\perp\)AD
CK\(\perp\)AD
=) BH // CK (*)
Do BD // AC
=) \(\widehat{DAC}\)=\(\widehat{B\text{D}A}\)(2 góc so le trong)
Xét tam giác AKC ( \(\widehat{AKC}\)= 900) và tam giác DHB (\(\widehat{DHB}\)= 900) có :
AC=BD (tính chất hính chữ nhật)
\(\widehat{DAC}\)=\(\widehat{B\text{D}A}\)( chứng minh trên )
=) Tam giác AKC= Tam giác DHB ( cạch huyền - góc nhọn )
CK=BH (2 cạch tương ứng ) (**)
Tứ (*) và (**) =) Tứ giác BHCK là hình bình hành
=) BK // CH
gọi thương là Q
Ta có; \(x^4-x^3-3x^2+ax+b=\left(x^2-x-2\right)Q+2x-3\)
\(x^4-x^3-3x^2+ax+b=\left(x+1\right)\left(x-2\right)Q+2x-3\)
Lần lượt cho x = -1 và x = 2, ta được:
\(\hept{\begin{cases}1+1-3-a+b=2.\left(-1\right)-3\\16-8-12+2a+b=2.2-3\end{cases}\Leftrightarrow\hept{\begin{cases}-a+b=-4\\2a+b=5\end{cases}}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-1\end{cases}}\)
Vậy a=3,b=-1
Ta có :
\(A=3x^2+2y^2+2xy-10x-10y+2030\)
\(A=3x^2+2\left(y-5\right)x+2y^2-10y+2030\)
\(\Leftrightarrow3x^2+2\left(y-5\right)x+2y^2-10y+2030+A\ge0\)
\(\Delta'=\left(y-5\right)^2-3\left(2y^2-10y+2030-A\right)\ge0\)
\(\Leftrightarrow-5y^2+20y-6065+3A\ge0\)
\(\Leftrightarrow3A\ge5y^2-20y+6065=5\left(y^2-4y+4\right)+6045\)
\(\Leftrightarrow3A\ge5\left(y-2\right)^2+6045\)
\(\Leftrightarrow A\ge\frac{5}{3}\left(y-2\right)^2+2015\ge2015\)
Vậy \(MinA=2015\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Ý kiến riêng =.=sai thì ib ạ
Cá không ăn muối cá ươn,
Con cãi cha mẹ trăm đường con hư
Hiện tượng : cá ko ướp muối sẽ ươn
về phần thành ngữ : có 3 câu thành ngữ về phần hiện tượng : có 2 hiện tượng :
- nước đổ lá môn + hiện tượng ko dính ướt
- nước đổ lá khoai + căng bề mặt của chất lỏng
- nước đổ đầu vịt
\(\frac{xy}{x^2+y^2}=\frac{5}{8}\)
\(\Rightarrow5\left(x^2+y^2\right)=8xy\)
Ta có : \(P=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{5\left(x^2+y^2-2xy\right)}{5\left(x^2+y^2+2xy\right)}\)
\(=\frac{5\left(x^2+y^2\right)-10xy}{5\left(x^2+y^2\right)+10xy}=\frac{8xy-10xy}{8xy+10xy}=\frac{-2xy}{18xy}=\frac{-1}{9}\)
Ta có: \(P=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{\frac{x^2+y^2-2xy}{x^2+y^2}}{\frac{x^2+y^2+2xy}{x^2+y^2}}=\frac{\frac{x^2+y^2}{x^2+y^2}-\frac{2xy}{x^2+y^2}}{\frac{x^2+y^2}{x^2+y^2}+\frac{2xy}{x^2+y^2}}\)
\(=\frac{1-\frac{2xy}{x^2+y^2}}{1+\frac{2xy}{x^2+y^2}}=\frac{1-\frac{2.5}{8}}{1+\frac{2.5}{8}}=\frac{-1}{9}\)
Vậy \(P=\frac{-1}{9}\)
Đáp án: 0 : 1 = 0 vì 0 chia bất cứ số nào cũng bằng 0.
Học tốt
giả sử a=b
---> a^2 = ab <=> a^2-b^2 = ab -b^2
<=>(a-b)(a+b)=b(a-b) <=> a+b=b
mà a = b ---> 2a=a <=> 2 = 1<=> 1+1 = 1+0
<=> 1=0