Tìm x, y,z thỏa mãn :
\(x+y+z+4=2\sqrt{x-3}+2\sqrt{y+2}+4\sqrt{z-1}\)
( Biết rằng x, y, z thuôc R và \(x\ge3\cdot y\ge2\cdot z\ge1\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x+y+z=13\left(1\right)\\x^2+y^2+z^2=91\\y^2=xz\left(3\right)\end{cases}}\left(2\right)\)
Ta có: (x+y+z)2=x2+y2+z2+2xy+2yz+2zx=132
=> x2+y2+z2=169-2(xy+yz+zx)
Thay vào PT (2) ta được: 169-2(xy+yz+zx)=91
=> xy+yz+zx=39
<=> xy+yz+y2=39 (Do xz=y2)
=> y(x+y+z)=39 <=> y.13=39 => y=3
Thay y=3 vào PT (1) và (3), ta được:
\(\hept{\begin{cases}x+z=10&xz=9&\end{cases}}\)
=> x(10-x)=9 <=> x2-10x+9=0 <=> (x2-10x+25)-16=0 <=> (x-5)2-42=0 <=> (x-9)(x-1)=0
=> x1=9 => z1=1
Và: x2=1 => z2=9
Các cặp nghiệm (x,y,z) là: (9,3,1) và (1,3,9)
\(\Rightarrow\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{6}\)
ĐK:\(x\ne-2;-3;-4;-5\)
MTC:\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right).6\)
Quy đồng khử mẫu:
\(M=\left(\frac{1}{\sqrt{x}+1}-\frac{1}{x+\sqrt{x}}\right):\frac{\sqrt{x}-1}{x+2\sqrt{x}+1}\)
=> \(M=\left(\frac{1}{\sqrt{x}+1}-\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right).\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
=> \(M=\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
=> \(M=\frac{\sqrt{x}+1}{\sqrt{x}}\)
x^2 + 6x + 5 = 0
<=>x^2 + x + 5x +5 = 0
<=>x(x + 1) + 5(x + 1) = 0
<=>(x + 1)(x + 5) = 0
<=> x + 1 =0 hoặc x + 5 =0
<=> x = -1 hoặc x = -5
x2 + 6x + 5 = 0
x2 + 5x + x + 5 = 0
( x2 + 5x ) + ( x + 5 ) = 0
x ( x + 5 ) + ( x + 5 ) = 0
( x + 1 ) ( x + 5 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}\)
Vậy \(x\in\left\{-1;-5\right\}\)
Bài toán này là một biến thể của phương trình và bất phương trình kiểu :
\(\frac{ax}{\sqrt{a^2x^2-1}}+ab\ge b\)
Thật vậy, ta có điều kiện của bài toán là : x≤−1 ∨ x≥1. x≤−1 ∨ x≥1.
Với x≤−1.x≤−1. Ta có bất phương trình vô nghiệm vì vế phải luôn dương và vế trái luôn âm.
Với x=1x=1 bất phương trình luôn đúng.
Với x>1x>1 ta biến đổi bất phương trình về bất phương trình
\(35\sqrt{x^2-1}< 12xy\left(1+\sqrt{x^2-1}\right)\)
\(\Leftrightarrow\frac{x}{\sqrt{x^2-1}}+x>\frac{35}{12}\)
\(\Leftrightarrow\left(\frac{x^2}{\sqrt{x^2-1}}\right)^2+2.\left(\frac{x^2}{\sqrt{x^2-1}}\right)-\left(\frac{35}{12}\right)^2>0\)
\(\Leftrightarrow\frac{x^2}{\sqrt{x^2-1}}>\frac{25}{12}\)do \(\frac{x^2}{\sqrt{x^2-1}}>0\)
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{x^2+1}=1-\frac{x^2}{x^2+1}\ge1-\frac{x^2}{2x}=1-\frac{x}{2}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{1+y^2}\ge1-\frac{y}{2};\frac{1}{1+z^2}\ge1-\frac{z}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge3-\frac{x+y+z}{2}=3-\frac{3}{2}=\frac{3}{2}\)
Khi \(x=y=z=1\)
làm tương trự như bài trên nhá