Anh chị hiups em câu 7d với huhu gấp lắm ạ :"<<<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Công thức 1: Đường phân giác trong là AD:
AD = 2/ (b + c) . căn bcp (p - a)
Công thức 2:
AD = 2bc. cosA/2 / (b + c)
Đường phân giác trong góc B và C từ đó suy ra.
Cách chứng minh công thúc 1:
Sử dụng vectơ.
theo công thức đường phân giác lớp 8 ta có DB / DC = c / b
Suy ra b.vtDB = -c.vtDC
=> b. (vtDA + vtAB) = - c. (vtDA + vtAC)
=> (b + c). vtAD = b. vtAB + c. vtAC
Bình phương hai vế có
(b+c)^2 AD^2 = 2b^2c^2 + 2bc. vtAB. vtAC
Thay vtAB.vtAC = (b^2 + c^2 - a^2) / 2 (công thức)
phân tích thành nhân tử, rút gọn có đpcm.
Cách chứng minh công thức 2:
Sử dụng diện tích:
S.ABC = S.ADB + S.ADC
bc. sinA = AD.c sinA/2 + AD.b sinA/2
2bc sinA/2 .cosA/2 = AD sinA/2 (b + c)
=> AD = 2bc.cosA/2 / (b + c)
Chú ý: Có thể dùng định lí hàm cos để tính cosA/2 thay vào công thức 2 để có công thức 1.
(vtAB là vectơ AB)
Ta có: \(\frac{2\sqrt{a}}{\sqrt{a}+1}>4\Leftrightarrow\frac{2\sqrt{a}}{\sqrt{a}+1}-4>0\Leftrightarrow\frac{2\sqrt{a}-4\sqrt{a}-4}{\sqrt{a}+1}>0\)
\(\Leftrightarrow-2\sqrt{a}-4>0\Leftrightarrow-2\left(\sqrt{a}+2\right)>0\Leftrightarrow\sqrt{a}+2>0\)
\(\Leftrightarrow\sqrt{a}>-2\left(voly\right)\)
Bài 1:
a) Ax ⊥ OA tại A, By ⊥ OB tại B nên Ax, By là các tiếp tuyến của đường tròn.
Theo tính chất của hai tiếp tuyến cắt nhau ta có:
CM = CA; DM = DB;
∠O1 = ∠O2; ∠O3 = ∠O4
⇒ ∠O2 + ∠O3 = ∠O1 + ∠O4 = 1800/2 = 900 (tính chất hai tia phân giác của hai góc kề bù).
⇒ ∠OCD = 900
b) CM và CA là hai tiếp tuyến của đường tròn, cắt nhau tại C nên CM = CA
Tương tự:
DM = DB
⇒ CM + DM = CA + DB
⇒ CD = AC + BD.
c) Ta có OM ⊥ CD
Trong tam giá vuông COD, OM Là đường cao thuộc cạnh huyển
OM2 = CM.DM
Mà OM = OA = OA = AB/2 và CM = AC; DM = BD
Suy ra AC.BD = AB2/2 = không đổi