Tìm x
2x^3-x^2+5x+5=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3=c\left(3ab-c^2\right)\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[2a^2+2b^2+2c^2-2ab-2bc-2ca\right]=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=0\left(loai\right)\\a=b=c\end{cases}}\)
Mà a + b + c = 3 nên a = b = c = 1
Khi đó \(A=672.\left(1+1+1\right)+2=672.3+2=2018\)
Gọi ba cạnh của tam giác đo lần lượt là \(a;b;c\) và 3 đường cao tương ứng là \(ha;hb;hc\)
Ta có:
\(Sabc=\frac{1}{2}a.ha=\frac{1}{2}b.hb=\frac{1}{2}c.hc\)
\(\Leftrightarrow\) \(a.ha=b.hb=c.hc\)
\(\Leftrightarrow\) \(\frac{a}{\frac{1}{ha}}=\frac{b}{\frac{1}{hb}}=\frac{c}{\frac{1}{hc}}\)
\(\Leftrightarrow\) \(a:b:c=\frac{1}{ha}:\frac{1}{hb}:\frac{1}{hc}\) hay \(a:b:c=\frac{1}{9,6}:\frac{1}{12}:\frac{1}{16}\)
\(\Leftrightarrow\) \(a:b:c=5:4:3\)
Vì 3 cạch của tam giác tỉ lệ với 5;4;3 nên tam giác sẽ đồng dạng với tam giác có ba cạch \(a'=5;b'=4;c'=3\)
Áp dụng công thức Hê-rong ta có:
\(Sa'b'c'=\sqrt{\frac{5+4+3}{2}\left(\frac{5+3+4}{2}-5\right)\left(\frac{5+4+3}{2}-4\right)\left(\frac{5+4+3}{2}-3\right)}\)
\(\Leftrightarrow\) \(Sa'b'c'=\sqrt{36}=6\)
\(\Leftrightarrow\) \(ha'=\frac{6.2}{5}=2,4\)
Lại có:
\(\frac{Sabc}{Sa'b'c'}=\left(\frac{9,6}{2.4}\right)^2=4^2=16\)
\(\Leftrightarrow\) \(Sabc=16.6=96\left(cm^2\right)\)
Vậy...............
Bằng 0 nha bạn vì bất kì số nào nhân 0 hoặc chia 0 đều bằng 0 hết nha bạn!!!
Kb nha rúi mình chỉ cho ok!?
Kẻ CH ⊥ BI và CH cắt BA tại D. Tam giác BCD có BH vừa là phân giác vừa là đường cao => Tam giác BCD cân tại B => BH là đường trung tuyến luôn => CH = DH. và DC = 2HC.
Đặt BC = x() Ta có: AD = BD - AB = BC - AB = x - 5
Gọi giao điểm của AC và BH là E.
Xét tam giác AEB và tam giác HEC có góc EAB = góc EHC = 90độ và góc AEB = góc HEC (đối đỉnh)
=> tam giác AEB ~ tam giác HEC(g.g)
=> Góc HCE = góc ABE.
=> Góc HCE = góc ABC/2 (1)
Mà Góc ECI = gócACB/2 (2)
Từ (1) và (2) => Góc ICH = Góc HCE + Góc ECI = (gócABC + góc ACB)/2 = 90độ/2 = 45độ.
Xét tam giác HIC có góc IHC = 90độ và Góc ICH = 45 độ (góc còn lại chắc chắn = 45 độ)
=> tam giác HIC vuông cân tại H => HI = HC.
Áp dụng đinh lý Py-ta-go cho tam giác này ta được: 2CH² = IC²
=> √2.CH = IC
=> CH = (IC)/(√2)
=> CH = 6/(√2)
=> DC = 2CH = 12/(√2) = 6√2
Xét tam giác: ADC có góc DAC = 90độ
=> Áp dụng định lý Py-ta-go ta có: DC² = AD² + AC²
=> AC² = DC² - AD²
=> AC² = (6√2)² - (x - 5)² (3)
Tương tự đối với tam giác ABC ta có: AC² = BC² - AB²
=> AC² = x² - 5² (4)
Từ (3) và (4) => (6√2)² - (x - 5)² = x² - 5²
<=> 72 - (x² - 10x + 25) = x² - 25
<=> 72 - x² + 10x - 25 - x² + 25 = 0
<=> -2x² + 10x + 72 = 0
<=> x² - 5x - 36 = 0
<=> x² - 9x + 4x - 36 = 0
<=> x(x - 9) + 4(x - 9) = 0
<=> (x - 9)(x + 4) = 0
<=> x - 9 = 0 hoặc x + 4 = 0
<=> x = 9 hoặc x = -4
=> chỉ có giá trị x = -9 là thoả mãn đk x > 5
=> BC = 5cm
b/ Tương tự ta tính được: CH = √5. => IH = √5 (cm)
=> BH = BI + IH = √5 + √5 = 2√5 (cm).
Xét tam giác BHC có góc BHC = 90độ => tính được BC = 5(cm). Kẻ IK ⊥ BC tại K.
Ta có IK = 1/2 đường cao hạ từ đỉnh H của tam giác BHC (chứng minh dựa vào tính chất đường trung bình).
=> IK.BC = S(BHC) = BH.HC/2
<=> IK.5 = 5
=> IK = 1(cm).
Xét tam giác BIK => tính được BK = 2 cm.
Kẻ IF vuông góc với AB => ta chứng minh đựơc BF = BK và AF = IF = IK
=> AB = (2 + 1)=3 (cm)
=> AC = 4cm
2016 - 16 + 20 - 20
= 2000 + 20 - 20
= 2020 - 20
= 2000
* Hok tốt !
# Miu
\(2x^3-x^2+5x+5=2\)
\(\Rightarrow2x^3-x^2+5x+3=0\)
\(\Rightarrow2x^3+x^2-2x^2-x+6x+3=0\)
\(\Rightarrow x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)=0\Rightarrow\left(2x+1\right)\left(x^2-x+3\right)=0\)
Mà \(x^2-x+3=\left(x-\frac{1}{2}\right)^2+\frac{11}{4}>0\forall x\)
Do đó: \(2x+1=0\Rightarrow x=-\frac{1}{2}\)