Cho a, b, c thuộc R, b # c và a2 +b2 = (a +b - c)2
CM \(\frac{\text{a^2 + (a - c)^2 }}{\text{b^2 + (b - c)^2 }}\)=\(\frac{a-c}{b-c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N P Q G
a) Tứ giác MNPQ là hình bình hành
Chứng minh
Hai trung tuyến BM, CN căt nhau tại G
=> G là trọng tâm tam giác ABC
=> BP=PG=MG, QC=QG=NG
=> G là trung điểm NQ và G là trung điểm MP mà NQ, MP là hai dduownff chéo tứ giác MNPQ
=> MNPQ là hình bình hành
b) Tam giác ABC cân tại A'
=> AG vuông BC (1)
Q là trung điểm GC, P là trung điểm GB
=> PQ là đường trung bình tam giác ABC
=> PQ //BC (2)
NP là đường trung bình tam giác ABG
=> NP//AG (3)
(1), (2), (3) => PQ vuông NP
=> NMQP là hình chữ nhật
câu b mk có cách khác nè
t.g BNC= t.g CMB (c-g-c)
=>CN=BM
ta có NQ=1/2 CN
MP= 1/2 BM
=> NQ=MP
lại có MNQP là hbh
=> MNQP là hcn
f(x) = ( x2010 + x20 + x19 + x + 1 ) : ( 1 - x2 )
f(x) = ( x2010 + x20 + x19 + x + 1 ) : ( 1 - x ) ( 1 + x )
Áp dụng định lý Bezout ta có 2 đa thức dư :
+) f(1) = 12010 + 120 + 119 + 1 + 1 = 5
+) f(-1) = (-1)2010 + (-1)20 + (-1)19 - 1 + 1 = 1
Vậy có 2 đa thức dư là f(1) = 5 và f(-1) = 1
B=\(\frac{\left(x^2+4x+3\right)\cdot\left(x^2+12x+35\right)+2015}{x^2+8x+11}=\frac{\left(x+2\right)^2+1\cdot\left(x+6\right)^2-1+2015}{\left(x+4\right)^2-5}\)
\(4x^2+3y^2-4x+30y+78\)
\(=\left(2x\right)^2-2\cdot2x\cdot1+1^2+3y^2+30y+75+2\)
\(=\left(2x-1\right)^2+3\left(y^2+2\cdot y\cdot5+5^2\right)+2\)
\(=\left(2x-1\right)^2+3\left(y+5\right)^2+2\ge2>0\)
=> đẳng thức ko thể bằng 0
=> đpcm
\(4x^2+3y^2-4x+30y+78=0\)
\(=4x^2-4x+1+3y^2+30y+75+2\)
\(=(4x^2-4x+1)+3(y^2+10y+25)+2\)
\(=(2x-1)^2+3(y+5)^2+2>0\)với mọi x
=> không có x,y nào thỏa mãn
P/S : Bài này chứng minh hay sao?
Tham khảo bài làm của mình : Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 8 - Học toán với OnlineMath
Bài 2:
B = 1.2.3 + 2.3.4 + ... + 2012.2013.2014
4B = 1.2.3.4 + 2.3.4.(5-1) + ... + 2012.2013.2014.(2015-2011)
4B = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + 2012.2013.2014.2015 - 2011.2012.2013.2014
4B = 2012.2013.2014.2015
B = 2012.2013.2014.2015 / 4
O là giao điểm của hai đường chéo AC,BD(gt)
=> AO=OC, OD=OB (vì ABCD là hình bình hành)
Lại có;
E là trung điểm của OD(gt)
=> OE=1/2.OD
F là trung điểm của OB(gt)
=> OF=1/2.OB
Mà OD=OB (cmt)
=> OE=OF
Tứ giác AFCE có: OA=OC(cmt) và OE=OF(cmt)
=> O là giao điểm của hai đường chéo AC,EF cắt nhau tại trung điểm mỗi đoạn
=> AFCE là hình bình hành
=> AE//CF (vì AE, CF là hai cạnh đối nhau)
Có AE//CF (cmt) => EK// CF (vì K thuộc AE)
Từ O vẽ đường thẳng cắt CD tại H sao cho OH//EK//CF
Xét tam giác DOH có: E là trung điểm của OD
EK//OH (theo cách vẽ đường thẳng OH)
=> K là trung điểm của DH
=> DK=KH (1)
Xét hình thang EKCF có: O là trung điểm của EF (theo câu a)
OH//EK//CF (theo cách vẽ đường thẳng OH)
=> H là trung điểm của KC
=> KH=HC (2)
Từ (1) và (2) => DK=KH=HC
Lại có: KC=KH+HC => KC= DK+DK (vì DK=KH=HC)
=> KC=2DK => DK=1/2KC