chung minh hai tia phan giac cua hai góc kề bù vuông góc với nhau(góc tao bởi 2 tia phân giác của 2 góc kề bù là một góc vuông)
giup mik nha ai đúng cho tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta\) vuông BEM và \(\Delta\)vuông CFM ta có :
BM = CM
EMB = CMF ( đối đỉnh )
=> \(\Delta\)BEM = \(\Delta\)CFM ( cạnh huyền - góc nhọn )
=> BE = CF
b, \(2x=3y=5z\Rightarrow\frac{30x}{15}=\frac{30y}{10}=\frac{30z}{6}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{2x}{30}=\frac{3z}{18}=\frac{2x-3z}{30-18}=\frac{60}{12}=5\)
\(\frac{x}{15}=5\rightarrow x=75\)
\(\frac{y}{10}=5\rightarrow y=50\)
\(\frac{z}{6}=5\rightarrow z=30\)
Nhận xét: A = 1,2 ,3 ( do MMMB bé hơn 10000 nên AMMM bé hơn 4000 suy ra A bé hơn 4)
Suy ra M lớn hơn 4. Mà AMMM chia hết cho 2 nên M chia hết cho 2 suy ra M = 6 hoặc 8
TH1: M=6 .
Với A = 1:
\(\frac{AMMM}{MMMB}=\frac{2}{5}=\frac{1666}{MMMB}\)
MMMB = \(1666\cdot5\div2=4165\)(vô lý) nên loại
Với A = 2
MMMB=\(2666\cdot5\div2=6665\)( chọn)
Với A = 3:
MMMB = \(3666\cdot5\div2=9165\)( loại)
TH2: M = 8
Với A = 1:
MMMB=\(1888\cdot5\div2=4720\)(loại)
Với A = 2
MMMB = \(2888\cdot5\div2=7220\)(loại)
Với A = 3
MMMB = \(3888\cdot5\div2=9720\)(loại)
Vậy A = 2, M = 6, B =5, AMMM = 2666, MMMB= 6665
Sửa đề : Cho 5 số \(a,b,c,d,e\inℕ\)thỏa mãn \(a^b=b^c=c^d=d^e=e^a\).Chứng minh rằng 5 số a,b,c,d,e bằng nhau.
Giải:
Giả sử \(a\ne b\)chẳng hạn a < b \((\)trường hợp a > b cũng chứng minh tương tự \()\). Chú ý rằng nếu hai lũy thừa bằng nhau có cơ số \((\)là số tự nhiên \()\)khác nhau thì lũy thừa nào có cơ số nhỏ hơn sẽ có số mũ lớn hơn . Từ \(a^b=b^c=c^d=d^e=e^a\)và a < b suy b > c , c < d , d > e , e < a , a > b,mâu thuẫn . Do đó a = b.
Nếu a = b = 1 thì c = d = e = 1 . Nếu a = b \(\ge\)2 thì b = c = d = e . Vậy năm số a,b,c,d,e bằng nhau
Vì \(\hept{\begin{cases}|2x+1-y|\ge0;\forall x,y\\|x-y|\ge0;\forall x,y\end{cases}}\)
\(\Rightarrow|2x+1-y|+|x-y|\ge0;\forall x,y\)
Do đó \(|2x+1-y|+|x-y|=0\)
\\(\Leftrightarrow\hept{\begin{cases}|2x+1-y|=0\\|x-y|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=y\\x=y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=x\\x=y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}\)
Vậy x=y=-1
A B D E F C
Như hình vẽ trên: DE là pg góc ADB và DF là pg góc ADC
=>ADE = 1/2 (ADB) và ADF = 1/2(ADC)
=>ADE + ADF = EDF = 1/2(ADB + ADC) = 1/2*180 = 90
=>dpcm
Giải:
O x' x y t m 0 t' GT xOy và x'Oy kề bù Ot là tia phân giác của góc xOy Ot' là tia phân giác của góc x'Oy KL Ot vuông góc với Ot'
Đặt \(\widehat{xOy}=m^0(0< m^0< 180^0)\)
Hai góc xOy và yOx' là hai góc kề bù nên \(\widehat{xOy}+\widehat{yOx'}=180^0\)do đó \(\widehat{x'Oy}=180^0-\widehat{xOy}=180^0-m^0\)
Theo giả thiết Ot và Ot' lần lượt là tia phân giác của góc xOy và x'Oy nên \(\widehat{tOy}=\frac{1}{2}\widehat{xOy}=\frac{1}{2}m^0\)và \(\widehat{t'Oy}=\frac{1}{2}\widehat{x'Oy}=\frac{1}{2}\left[180^0-m^0\right]\). Tia Oy nằm giữa hai tia Ot và Ot', do đó \(\widehat{tOt}=\widehat{tOy}+\widehat{yOt'}=\frac{1}{2}m^0+\frac{1}{2}\left[180^0-m^0\right]=90^0\)
Vậy \(Ot\perp Ot'\)