K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2018

a, ta có

+ M ddooid xứng với điểm D qua AB => md vuông góc vs ab(1)

+  N đối xứng với điểm D qua AC.=>dn vuông góc vs ac(2)

mà tam giác abc vuông tại a(3)

từ 1,2,3 => AEDF là hcn

23 tháng 11 2018

a) \(A=2x^2+2x+3\)

\(A=2\left(x^2+x+\frac{3}{2}\right)\)

\(A=2\left[x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{5}{4}\right]\)

\(A=2\left[\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\right]\)

\(A=2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)

b) Biến đổi mẫu thức :

\(3x^2+4x+15\)

\(=3\left(x^2+\frac{4}{3}x+5\right)\)

\(=3\left[x^2+2\cdot x\cdot\frac{2}{3}+\left(\frac{2}{3}\right)^2+\frac{41}{9}\right]\)

\(=3\left[\left(x+\frac{2}{3}\right)^2+\frac{41}{9}\right]\)

\(=3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}\)

\(B=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\ge\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{2}{3}=0\Leftrightarrow x=\frac{-2}{3}\)

c) \(C=-x^2+2x-2\)

\(C=-\left(x^2-2x+2\right)\)

\(C=-\left(x^2-2\cdot x\cdot1+1^2+1\right)\)

\(C=-\left[\left(x-1\right)^2+1\right]\)

\(C=-1-\left(x-1\right)^2\le-1\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

d) Biến đổi mẫu thức tương tự câu b)

11 tháng 2 2020

\(P=\frac{xy}{\left|xy\right|}+\frac{x-y}{\left|x-y\right|}\cdot\left(\frac{x}{\left|x\right|}-\frac{y}{\left|y\right|}\right)\)

TH1: \(x,y>0\)

+) Xét \(x>y\)\(P=\frac{xy}{xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{x}-\frac{y}{y}\right)=1+1\cdot\left(1-1\right)=1\)

+) Xét \(x< y\)\(P=\frac{xy}{xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{x}-\frac{y}{y}\right)=1+\left(-1\right)\cdot\left(1-1\right)=1\)

TH2: \(x,y< 0\)

+) Xét \(x>y\)\(P=\frac{xy}{xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{-x}-\frac{y}{-y}\right)=1+1\cdot\left[-1-\left(-1\right)\right]=1\)

+) Xét \(x< y\)\(P=\frac{xy}{xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{-x}-\frac{y}{-y}\right)=1\)

TH3: \(x>0;y< 0\)\(P=\frac{xy}{-xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{x}-\frac{y}{-y}\right)=-1+1\cdot\left(1+1\right)=1\)

TH4: \(x< 0;y>0\)\(P=\frac{xy}{-xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{-x}-\frac{y}{y}\right)=-1+\left(-1\right)\cdot\left(-1-1\right)=1\)

Nói chung với mọi x, y thì P = 1

A C B H D F E

Bài làm:

a) Trong \(\Delta ABC\)có:

           AD = BD (gt)

           AF = CF  (gt)

\(\Rightarrow\)FD là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)FD // BC và FD = \(\frac{1}{2}\)BC

Mà E là trung điểm của đoạn thẳng BC (gt)

\(\Rightarrow\)FD//CE và FD = CE

\(\Rightarrow\)Tứ giác DECF là hình bình hành

b) Ta có hình bình hành DECF là hình chữ nhật khi \(\widehat{C}\)= 90o

\(\Leftrightarrow AC\perp BC\)

Vậy tam giác ABC vuông tại C thì tứ giác DECF là hình chữ nhật

c) Trong hình bình hành DECF có: DE = CF

Mà CF = AF (gt)

\(\Rightarrow\)DE = CF = AF = 13 cm

Mặt khác AC = AF + CF

\(\Rightarrow\)AC = 13 + 13 = 26 cm

Áp dụng định lí Pytago vào \(\Delta ACH\)vuông tại H ta có:

     AC2 = AH2 + CH2

\(\Rightarrow\)CH2 = AC2 - AH2

Thay CH2 = 262 - 102

\(\Rightarrow\)CH2 = 676 - 100

\(\Rightarrow\)CH2 = 576

\(\Rightarrow\)CH = \(\sqrt{576}\)= 24

Vậy diện tích tam giác ACH là : \(\frac{1}{2}.10.24=120\left(cm^2\right)\)

d) Hình bình hành DECF có DF//CE

\(\Rightarrow\)DF//HE

\(\Rightarrow\)DFHE là hình thang      (1)

Trong \(\Delta ABC\)có:

   AD = BD (gt)

   BE = CE (gt)

\(\Rightarrow\)DE là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)DE = \(\frac{1}{2}\)AC      (2)

Trong \(\Delta ACH\)vuông tại H có: AF = CF (gt)

\(\Rightarrow\)HF là đường trung tuyến ứng với cạnh huyền AC

\(\Rightarrow\)HF = \(\frac{1}{2}\)AC    (3)

Từ (2) và (3)\(\Rightarrow\)DE = HF       (4)

Từ (1) và (4)\(\Rightarrow\)DFHE là hình thang cân

23 tháng 11 2018

a) x4-9x2

(x2-3x)(x2+3x)

x2(x-3)(x+3)

23 tháng 11 2018

x2+y2+2xy-9

(x+y)2-32

(x+y-3)(x+y+3)

27 tháng 11 2019

Câu hỏi của Phạm Thị Thùy Linh - Toán lớp 8 - Học toán với OnlineMath

23 tháng 11 2018

\(a)\frac{2x-1}{5x-10}\)    \(\text{Đ}K:x\ne2\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\frac{1}{2}(TM)\)

\(b)\frac{x^2-x}{2x}\)    \(\text{Đ}K:x\ne0\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x.(x-1)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0(lo\text{ại})\\x=1(TM)\end{cases}}\)

\(c)\frac{2x+3}{4x-5}\)      \(\text{Đ}K:x\ne\frac{5}{4}\)

\(\Leftrightarrow2x+3=0\)

\(\Leftrightarrow x=\frac{-3}{2}(TM)\)

\(d)\frac{(x-1).(x+2)}{(x-3).(x-1)}\)    \(\text{Đ}K:\hept{\begin{cases}x\ne3\\x\ne1\end{cases}}\)

\(\Leftrightarrow(x-1).(x+2)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1(l\text{oại})\\x=-2(TM)\end{cases}}\)

gửi cho 4 câu trc

23 tháng 11 2018

dài vl