cho \(a,b,c\in\left[0,1\right].CMR:\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đồ thị hàm số song song với đường thẳng \(y=mx+2\)khi
\(\Rightarrow\hept{\begin{cases}2m-3=m\\2\ne2\left(voli\right)\end{cases}}\Rightarrow2m-m=3\Rightarrow m=3\)
vậy \(m=3\)thì đồ thị hàm số trên song song với đường thẳng \(y=mx+2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{a}{b+c+2a}+\frac{b}{a+c+2b}+\frac{c}{a+b+2c}\)
\(=\frac{a}{\left(b+a\right)+\left(a+c\right)}+\frac{b}{\left(a+b\right)+\left(c+b\right)}+\frac{c}{\left(a+c\right)+\left(b+c\right)}\)
Áp dụng bđt \(\frac{x}{y+z}\le\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)\) ta có :
\(A\le\frac{1}{4}\left(\frac{a}{b+a}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{b+c}\right)\)
\(\Leftrightarrow A\le\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{a+c}{a+c}+\frac{b+c}{b+c}\right)=\frac{1}{4}.3=\frac{3}{4}\) có GTLN là \(\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
\(GTLN:\frac{a}{b+c+2a}+\frac{b}{a+c+2b}+\frac{c}{a+b+2c}=\frac{3}{4}\)
giả sử a>(=)b>(=)c