Chứng minh rằng số A = \(\frac{2\sqrt{3+\sqrt{5-13+\sqrt{48}}}}{\sqrt{6}+\sqrt{2}}\) là một số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:\(a,b,c\ge0;a+b+c=4\)
\(\Rightarrow a+b\le4\)\(mà\)\(a,b\ge0\)\(\Rightarrow0\le a+b\le4\left(1\right)\)
\(\Rightarrow\sqrt{a+b}\le2\)
\(\Rightarrow2-\sqrt{a+b}\ge0\)\(\left(2\right)\)
Từ (1) và(2)\(\Rightarrow\sqrt{a+b}\left(2-\sqrt{a+b}\right)\ge0\)
\(\Rightarrow2\sqrt{a+b}\ge a+b\)
CMTT:\(2\sqrt{b+c}\ge b+c;2\sqrt{c+a}\ge c+a\)
\(\Rightarrow2\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\ge2\left(a+b+c\right)\)
Mà a+b+c=4\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\ge4\)
Dấu "="xảy ra khi \(\left(a;b;c\right)=\left(4;0;0\right);\left(0;4;0\right);\left(0;0;4\right)\)
1 giờ 15 phút = 1.25 giờ
38km 400m = 38400 m
Trung bình mỗi giờ người đó đi được:
38400 : 1,25 = 30720 (m)
Đ/s....
Ta có: \(3x+y-1=0\)
\(\Rightarrow3x+y=1\)
Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có:
\(\left(3x^2+y^2\right)\left(3+1\right)=\left[\left(\sqrt{3}x\right)^2+y^2\right]\left[\left(\sqrt{3}\right)^2+1^2\right]\ge\left(\sqrt{3}x.\sqrt{3}+y.1\right)^2\)
\(\Leftrightarrow4B\ge1^2\)
\(\Leftrightarrow B\ge\frac{1}{4}\)
Dấu = xảy ra khi \(\frac{\sqrt{3}x}{\sqrt{3}}=\frac{y}{1}\Rightarrow x=y=\frac{1}{4}\)
Vậy........
O A B C D E H F
a) Do D thuộc đường tròn (O), AB là đường kính nên \(\widehat{BDC}=90^o\Rightarrow BD\perp AC\)
Xét tam giác vuông ABC, đường cao BD ta có:
\(AB^2=AD.AC\) (Hệ thức lượng)
b) Xét tam giác BEC có O là trung điểm BC; OH // CE nên OH là đường trung bình của tam giác. Vậy nên H là trung điểm BE.
Ta có OH // CE mà CE vuông góc AB nên \(OH\perp BE\)
Xét tam giác ABE có AH là trung tuyến đồng thời đường cao nên nó là tam giác cân.
Hay AB = AE.
Từ đó ta có \(\Delta ABO=\Delta AEO\left(c-c-c\right)\Rightarrow\widehat{OEA}=\widehat{OBA}=90^o\)
Vậy AE là tiếp tuyến của đường tròn (O)
c) Xét tam giác vuông OBA đường cao BH, ta có:
\(OB^2=OH.OA\) (Hệ thức lượng)
\(\Rightarrow OC^2=OH.OA\Rightarrow\frac{OH}{OC}=\frac{OC}{OA}\)
Vậy nên \(\Delta OHC\sim\Delta OCA\left(c-g-c\right)\Rightarrow\widehat{OHC}=\widehat{OCA}\)
d) Ta thấy \(\widehat{OCF}=\widehat{FCE}\left(=\widehat{OFC}\right)\)
Lại có \(\widehat{OCH}=\widehat{ACE}\left(=\widehat{OAC}\right)\)
Nên \(\widehat{HCF}=\widehat{FCA}\) hay CF là phân giác góc HCA.
Xét tam giác HCA, áp dụng tính chất đường phân giác trong tam giác, ta có:
\(\frac{HF}{FA}=\frac{HC}{CA}\Rightarrow FA.HC=HF.CA\left(đpcm\right)\)
ở phần c còn cạnh nào nữa để 2 tam giác đấy đồng dạng vậy cậu