tìm giá trị lớn nhất của biểu thức:
\(P=x+\sqrt{1-2x-x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đang vội nên mk làm tắt nha . đk x>=-5/4
\(\Leftrightarrow2\left(x+1\right)\)\(.\left[\left(x+2\right)-\sqrt{4x+5}\right]+2 \left(x+5\right)\sqrt{x+3}\left(\sqrt{x+3}-2\right)+\)\(2x^2+6x-8=0\)
\(\Leftrightarrow\frac{2\left(x+1\right)^2\left(x-1\right)}{x+2+\sqrt{4x+5}}+\frac{2\left(x+5\right)\left(x-1\right)\sqrt{x+3}}{\sqrt{x+3}+2}+2\left(x-1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\frac{2\left(x+1\right)^2}{x+2+\sqrt{4x+5}}+\frac{2\left(x+5\right)\sqrt{x+3}}{\sqrt{x+3}+2}+2\left(x+4\right)\right]=0\)
de thấy bt trong ngoặc dương suy ra x=1 là no
2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
theo yêu cầu của bạn thì đến đâ mk làm theo cách này
ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)
cách 2
\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
\(\Rightarrowđpcm\)
a) vì \(AC\)VÀ \(CM\)LÀ 2 TIẾP TUYẾN CẮT NHAU TẠI \(C\)CỦA ĐƯỜNG TRÒN \(\left(O\right)\)NÊN TA CÓ
- \(CO\)LÀ TIA PHÂN GIÁC \(\widehat{ACM}\) ( TÍCH CHẤT
- \(OC\)LÀ TIA PHÂN GIÁC \(\widehat{AOM}\) 2 TIẾP TUYẾN
- \(AC=CM\) CẮT NHAU )
\(\Rightarrow\widehat{AOC}=\widehat{MOC}\)
C/M TƯƠNG TỰ TA CÓ \(\widehat{MOD}=\widehat{BOD}\)
+ TA CÓ: \(\widehat{AOC}+\widehat{MOC}+\widehat{MOD}+\widehat{BOD}=180^0\)
\(\Leftrightarrow2\widehat{COM}+2\widehat{MOD}=180^0\)
\(\Leftrightarrow2.\left(\widehat{COM}+\widehat{MOD}\right)=180^0\)
\(\Leftrightarrow\widehat{COM}+\widehat{MOD}=90^0\)
HAY \(\widehat{COD}=90^0\)
VẬY \(\widehat{COD}=90^0\)
B) XÉT \(\Delta AOM\)CÓ : \(AO=OM\)( BÁN KÍNH ĐƯỜNG TRÒN TÂM O )
\(\Rightarrow\Delta AOM\)LÀ \(\Delta\)CÂN TẠI O
MÀ \(\widehat{AOI}=\widehat{MOI}\)( TÍNH CHẤT 2 TIẾP TUYẾN CẮT NHAU )
\(\Rightarrow OI\)LÀ TIA PHÂN GIÁC ĐỒNG THỜI LÀ ĐƯỜNG CAO TRONG \(\Delta\) CÂN \(AOM\)
\(\Rightarrow OI\perp AM\)TẠI \(I\)
\(\Rightarrow\widehat{MIO}=90^0\)
C/M TƯƠNG TỰ TA CÓ: \(MK\perp OK\)
\(\Rightarrow\widehat{OKM}=90^0\)
THEO CÂU A) TA CÓ: \(\widehat{COD}=90^0\)
XÉT TỨ GIÁC \(OIMK\) CÓ 3 GÓC VUÔNG \(\Rightarrow\)TỨ GIÁC \(OIMK\)LÀ HÌNH CHỮ NHẬT
VẬY T/G \(OIMK\)LÀ HCN
C) TA CÓ: \(AC=CM\)( TÍNH CHẤT 2 TIẾP TUYẾN ....)
TƯƠNG TỰ \(MD=BD\)
KHI ĐÓ: \(AC.BD\)
\(=CM.MD\)
+ \(OM\perp CM\)( \(CM\)LÀ TIẾP TUYẾN TẠI M )
ÁP DỤNG HỆ THỨC GIỮA CẠNH VÀ ĐƯỜNG CAO VÀO \(\Delta COD\)VUÔGN TẠI \(O\), ĐƯỜNG CAO \(OM\)TA CÓ
\(CM.MD=MO^2\)
\(\Rightarrow CM.MD=R^2\) ( VÌ \(MO\)LÀ BÁN KÍNH)
HAY \(AC.BD=R^2\) MÀ \(R\)KHÔNG ĐỔI
\(\Rightarrow AC.BD\)KO ĐỔI KHI \(C\)DI CHUYỂN TRÊN \(Ax\)
D) VẼ \(I\)LÀ TRUNG ĐIỂM CỦA \(CD\), NỐI \(O\)VỚI \(I\)
\(AC\perp AB\) ( AC LÀ TIẾP TUYẾN TẠI A )
\(BD\perp AB\)( BD LÀ TIẾP TUYẾN TẠI B)
\(\Rightarrow AC\)SONG SONG \(BD\)( CÙNG VUÔNG GOC VỚI AB )
\(\Rightarrow\)T/G \(ACDB\)LÀ HÌNH THANG
XÉT HÌNH THANG \(ACDB\)
CÓ \(CI=DI\)
\(AO=OB\)
\(\Rightarrow OI\)SONG SONG \(AC\)
MÀ \(AC\perp AB\)
\(\Rightarrow OI\perp AB\) ( 1 )
+ \(MC=MD=\frac{1}{2}CD\)
XÉT \(\Delta\)VUÔNG \(COD\)CÓ \(OI\)LÀ ĐƯỜNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN \(CD\)
VÀ \(OI=\frac{1}{2}CD\)
\(\Rightarrow OM=MC=MD\)
\(\Rightarrow M\)CÁCH ĐỀU 3 ĐIỂM \(O,C,D\)
\(\Rightarrow M\in\left(I;\frac{CD}{2}\right)\) ( 2 )
TỪ ( 1 ) VÀ ( 2 ) TA CÓ: \(AB\)LÀ TIẾP TUYẾN CỦA ĐƯỜNG TRÒN ĐƯỜNG KÍNH CD
\(P^2=\left(1.x+1.\sqrt{1-2x-x^2}\right)^2\)
Áp dụng bđt bunhiakovsky ta có:
\(P^2=\left(1.x+1.\sqrt{1-2x-x^2}\right)^2\le\left(1^2+1^2\right)\left(x^2+\left(\sqrt{1-2x-x^2}\right)^2\right)\)
\(\Leftrightarrow P^2\le2\left(x^2+1-2x-x^2\right)=-4x+2\)
\(P=x+\sqrt{1-2x-x^2}=x+\sqrt{-x^2-2x+1}.\)
\(=x+\sqrt{-\left(x^2+2x+1\right)+2}=x+\sqrt{-\left(x+1\right)^2+2}\)