Cho đa thức P(x) = x5 - ax4+ bx3 - cx2 + dx – 2010.
a) Xác định a, b, c, d biết P(1) = -2011; P(2) = -2084; P(3) = -2385; P(-1) = -2045.
b) Với các giá trị của a, b, c, d vừa tìm được, tìm số dư r của phép chia P(x) cho nhị thức:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(3^{13579}=m\).
Vì (3;13579)=1 nên (13579;m)=1 (*)
đem m+1 số \(13579;13579^2;...;13579^{m+1}\)chia cho m
Theo nguyên lý Dirichle trong m+1 số trên có ít nhất 2 số khi chia cho m có cùng số dư
Gọi 2 số đó là \(13579^x\&13579^y\)(tự đk cho x;y)
giả sử x>y
=>13579^x-13579^y chia hết cho m
=>\(13579^y\left(13579^{x-y}-1\right)\)chia hết cho m
mà 13579^y không chia hết cho m nên 13579^x-y -1 chia hết cho m
=>tồn tại n=x-y thỏa mãn đề bài
O' O B C K Y A
a) Ta thấy ngay AY chính là tiếp tuyến chung của hai đường tròn (O) và (O')
Theo tính chất hai tiếp tuyến cắt nhau, ta có YB = YA = YC
Vậy nên tam giác BAC vuông tại A hay \(\widehat{BAC}=90^o\)
b) Theo tính chất hai tiếp tuyến cắt nhau ta có \(\widehat{AYO}=\widehat{OYB};\widehat{AYO'}=\widehat{O'YC}\)
\(\Rightarrow\widehat{OYO'}=\widehat{OYA}+\widehat{AYO'}=90^o\)
Xét tam giác vuông OYO' có YK là trung tuyến ứng với cạnh huyền nên \(KY=\frac{OO'}{2}\)
c) Ta thấy ngay BOO'C là hình thang vuông có Y là trung điểm BC, K là trung điểm OO' nên KY là đường trung bình của hình thang.
Vậy thì KY // OB // O'C
Từ đó ta có ngay KY vuông góc BC.
Lại có \(KY=KO\)
Nên BC là tiếp tuyến của đường tròn tâm K, bán kính KO.
Câu hỏi của ミ★¢тƙ_⁰⁷★彡 - Toán lớp 8 - Học toán với OnlineMath
a) \(P\left(1\right)=1-a+b-c+d-2010=-2011\)
\(\Rightarrow a-b+c-d=2\)
\(P\left(-1\right)=-1-a-b-c-d-2010=-2045\)
\(\Rightarrow a+b+c+d=34\)
\(\Rightarrow\hept{\begin{cases}2b+2d=32\\2a+2c=36\end{cases}}\Leftrightarrow\hept{\begin{cases}b+d=16\\a+c=18\end{cases}}\)
\(P\left(2\right)=32-16a+8b-4c+2d-2010\)
\(=-12a-4\left(a+c\right)+2\left(b+d\right)+6b-1978\)
\(=-12a-4.18+2.16+6b-1978\)
\(=-12a+6b-2018=-2084\)
\(\Rightarrow2a-b=11\)
\(P\left(3\right)=243-81a+27b-9c+3d-2010\)
\(=243-72a-9\left(a+c\right)+3\left(b+d\right)+24b-2010\)
\(=243-72a+24b-9.18+3.16-2010=-2385\)
\(\Rightarrow-72a+24b=-504\Rightarrow3a-b=21\)
Từ đó ta có \(\hept{\begin{cases}2a-b=11\\3a-b=21\end{cases}\Rightarrow\hept{\begin{cases}a=10\\b=9\end{cases}\Rightarrow}\hept{\begin{cases}c=8\\d=7\end{cases}}}\)
Vậy đa thức cần tìm là \(f\left(x\right)=x^5+10x^4+9x^3+8x^2+7x-2010\)