K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2018

ĐKXĐ : \(x\ne\pm3\)

a) \(A=\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)

\(A=\left(\frac{-2x\left(3+x\right)}{\left(3-x\right)\left(3+x\right)}-\frac{\left(x+1\right)\left(3-x\right)}{\left(x+3\right)\left(3-x\right)}+\frac{x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3}{x+3}-\frac{x-1}{x+3}\right)\)

\(A=\left(\frac{-2x^2-6x+x^2-2x-3+x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3-x+1}{x+3}\right)\)

\(A=\left(\frac{-8x-2}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{4}{x+3}\right)\)

\(A=\frac{-2\left(4x+1\right)\left(x+3\right)}{\left(3-x\right)\left(3+x\right)4}\)

\(A=\frac{-\left(4x+1\right)}{2\left(3-x\right)}\)

\(A=\frac{4x+1}{2\left(x-3\right)}\)

b) \(\left|x-5\right|=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}}\)

Mà ĐKXĐ x khác 3 => ta xét x = 7

\(A=\frac{4\cdot7+1}{2\cdot\left(7-3\right)}=\frac{29}{8}\)

c) Để A nguyên thì 4x + 1 ⋮ 2x - 3

<=> 4x - 6 + 7 ⋮ 2x - 3

<=> 2 ( 2x - 3 ) + 7 ⋮ 2x - 3

Mà 2 ( 2x - 3 ) ⋮ ( 2x - 3 ) => 7 ⋮ 2x - 3

=> 2x - 3 thuộc Ư(7) = { 1; -1; 7; -7 }

=> x thuộc { 2; 1; 5; -2 }

Vậy .....

28 tháng 11 2018

a)   ĐKXĐ: \(x\ne\pm3\)

   \(A=\frac{2x\left(x+3\right)-\left(x+1\right)\left(x-3\right)-\left(x^2+1\right)}{x^2-9} : \frac{x+3-\left(x-1\right)}{x+3}\)

 \(A=\frac{2x^2-6x-x^2+2x+3-x^2-1}{x^2-9} : \frac{4}{x+3}\)

\(A=\frac{-4x+2}{x^2+9} : \frac{4}{x+3}\)

\(A=\frac{2\left(1-2x\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{4}=\frac{1-2x}{2x-6}\)

b)

  Có 2 trường hợp:

T.Hợp 1:

               \(x-5=2\Leftrightarrow x=7\)(thỏa mã ĐKXĐ)

thay vào A ta được: A=\(-\frac{13}{8}\)

T.Hợp 2:

          \(x-5=-2\Leftrightarrow x=3\)(Không thỏa mãn ĐKXĐ)

Vậy không tồn tại giá trị của A tại x=3

Vậy với x=7 thì A=-13/8

c)

      \(\frac{1-2x}{2x-6}=\frac{1-\left(2x-6\right)-6}{2x-6}=-1-\frac{5}{2x-6}\)

Do -1 nguyên, để A nguyên thì \(-\frac{5}{2x-6}\inℤ\)

Để \(-\frac{5}{2x-6}\inℤ\)thì \(2x-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Do 2x-6 chẵn, để x nguyên thì 2x-6 là 1 số chẵn .

Vậy không có giá trị nguyên nào của x để A nguyên

  

28 tháng 11 2018

Ko chắc nhé !

#Anh#

28 tháng 11 2018

+) n > 2 hoặc n < -3
A = n^4 + 2n³ + 2n² + n + 7 
= (n² + n)² + n² + n + 7 
mà n² + n + 7 = (n + 1/2)² + 27/4 
=> A > (n² + n)² 

Xét (n² + n + 1)² - A 
= n^4 + n² + 1 + 2n³ + 2n² + 2n - n^4 - 2n³ - 2n² - n - 7 
= n² + n - 6 
= (n - 2)(n + 3) > 0

=> (n² + n)² < A < (n² + n + 1)² 
=> A không phải số chính phương 

Để A là số chính phương 
-3 ≤ n ≤ 2 
=> n thuộc {-3;-2;-1;0;1;2;3} 
Thay các giá trị của n vào A 
với A = -3 => A = 49 
A = 2 => A = 49 

28 tháng 11 2018

\(A\left(x\right)=\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+10\)

\(=\left[\left(x-1\right)\left(x-6\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]+10\)

\(=\left(x^2-7x+6\right)\left(x^2-7x+12\right)+10\)

Đặt \(x^2-7x+9=t\)

Khi đó: \(A=\left(t-3\right)\left(t+3\right)+10=t^2+1\ge1\forall t\)

Dấu "=" xảy ra khi: \(x^2-7x+9=0\)

28 tháng 11 2018

a,\(M=\left(\frac{4}{x-4}-\frac{4}{x+4}\right).\frac{x^2+8x+16}{32}\)

\(M=\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\right).\frac{\left(x+4\right)^2}{32}\)

\(M=\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}.\frac{\left(x+4\right)^2}{32}\)

\(M=\frac{32\left(x+4\right)^2}{32\left(x+4\right)\left(x-4\right)}=\frac{x+4}{x-4}\)

b,

Để M = \(\frac{1}{3}\)

\(\Rightarrow x-4=3x+12\)

\(\Rightarrow2x=16\Leftrightarrow x=8\)

\(c,\)\(\frac{x+4}{x-4}=\frac{x-4+8}{x-4}\)

\(\Rightarrow x-4\inƯ\left(8\right)=\left(1;-1;2;-2;4;-4;8;-8\right)\)

28 tháng 11 2018

\(\Rightarrow x-4\in\left(5;3;6;2;8;0;12;-4\right)\)

Vậy để M thuộc Z thì x phải thỏa mãn các điều kiện trên .

28 tháng 11 2018

ĐKXĐ : \(x\ne2;x\ne0\)

a) \(E=\frac{x^2}{x-2}\cdot\left(\frac{x^2+4}{x}-4\right)+3\)

\(E=\frac{x^2}{x-2}\cdot\left(\frac{x^2+4-4x}{x}\right)+3\)

\(E=\frac{x^2}{x-2}\cdot\frac{\left(x-2\right)^2}{x}+3\)

\(E=\frac{x^2\left(x-2\right)^2}{\left(x-2\right)x}+3\)

\(E=x\left(x-2\right)+3\)

b) Để E = 2 thì \(x\left(x-2\right)+3=2\)

\(\Leftrightarrow x^2-2x+3-2=0\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

c) Ta có :

\(E=x\left(x-2\right)+3\)

\(E=x^2-2x+3\)

\(E=x^2-2x+1+2\)

\(E=\left(x-1\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)