câu 1 làm như thế nào ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Yêu cầu bạn không đăng lung tung lên diễn đàn!
Số số hạng là \(\dfrac{2n-1-1}{2}+1=\dfrac{2n-2}{2}+1=n\left(số\right)\)
Tổng của dãy số là:
\(M=\dfrac{\left(2n-1+1\right)\cdot n}{2}=\dfrac{2n\cdot n}{2}=n^2\)
=>M là số chính phương
Đây là cấp số cộng có d=2 và số số hạng là
\(\dfrac{2n-1-1}{2}+1=n\) số hạng
\(\Rightarrow M=\dfrac{n\left(1+2n-1\right)}{2}=n^2\) là số chính phương
\(\dfrac{3}{5}\) giờ = \(36\) phút
Tỉ số phần trăm của a và b:
\(36.100\%:20=180\%\)
\(\dfrac{B}{2}=\dfrac{7}{2\cdot19\cdot31}+\dfrac{5}{2\cdot19\cdot43}+\dfrac{3}{2\cdot23\cdot43}+\dfrac{11}{2\cdot23\cdot57}\)
=>\(\dfrac{B}{2}=\dfrac{7}{31\cdot38}+\dfrac{5}{38\cdot43}+\dfrac{3}{43\cdot46}+\dfrac{11}{46\cdot57}\)
=>\(\dfrac{B}{2}=\dfrac{1}{31}-\dfrac{1}{38}+\dfrac{1}{38}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}+\dfrac{1}{46}-\dfrac{1}{57}\)
=>\(\dfrac{B}{2}=\dfrac{1}{31}-\dfrac{1}{57}=\dfrac{26}{1767}\)
=>\(B=\dfrac{52}{1767}\)
Sửa đề: Chứng minh A là phân số tối giản
Gọi d=ƯCLN(n+1;2n+3)
=>\(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
=>\(2n+3-2n-2⋮d\)
=>\(1⋮d\)
=>d=1
=>ƯCLN(n+1;2n+3)=1
=>\(A=\dfrac{n+1}{2n+3}\) là phân số tối giản
Bài đã đăng bạn lưu ý không đăng lại nữa nhé, tránh gây loãng box toán.
Câu 1 nè em