2/3x-1/2=x/6+[-2/3] mu2
Tim x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì -1 hơn 1 hai số cho nên;
a) a/b và c/d ^2 =ab/cd hơn kém nhau 2
b) dựa theo tính chất kết hợp (a+b/c+d ) ^3 = a ^3 ...
\(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
\(\Rightarrow\frac{a-b}{c-d}=\frac{bk-b}{dk-d}=\frac{b\left(k-1\right)}{d\left(k-1\right)}=\frac{b}{d}\Rightarrow\left(\frac{a-b}{c-d}\right)^2=\frac{b^2}{d^2}\)
=> Sai đề.
a)(2x-3)2=1<=> \(\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}< =>\orbr{\begin{cases}2x=4\\2x=2\end{cases}}}\)\(< =>\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
x=2 =>22.52=20y.5y <=>100 = 100y <=> y=1
x=1 => 2.5= 20y.5y <=>10=100y <=>y = 1/2
b)(4x-3)2+(y2-9)2\(\ge0\)
dấu = sảy ra khi \(\hept{\begin{cases}4x-3=0\\y^2-9=0\end{cases}< =>\hept{\begin{cases}4x=3\\y^2=9\end{cases}}}\)\(\hept{\begin{cases}x=\frac{3}{4}\\y=\pm3\end{cases}}\)
c) <=> (y-5)8 \(\le-\left(x+4\right)^7\) (1)
(y-5)8 >=0 với mọi y nên -(x+4)7 \(\ge\left(y-5\right)^8\ge0\)<=> (x+4)7\(\le0< =>x+4\le0< =>x\le-4\)
Khi đó (1) <=> y-5\(\le\sqrt[8]{-\left(x+4\right)^7}\) <=> y\(\hept{\begin{cases}y\le5-\sqrt[8]{-\left(x+4\right)^7}\\x\le-4\end{cases}}\)
Ta có : \(\left|4x-1\right|\ge0\forall x\)
\(\left|2y+1\right|\ge0\forall y\)
\(\Rightarrow\left|4x+1\right|+\left|2y-1\right|\ge0\)
\(\Rightarrow B\ge0\)
Dấu "=" xảy ra <=> \(\left|4x-1\right|+\left|2y+1\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|4x-1\right|=0\\\left|2y+1\right|=0\end{cases}\Rightarrow\hept{\begin{cases}4x-1=0\\2y+1=0\end{cases}\Rightarrow}\hept{\begin{cases}4x=1\\2y=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{1}{2}\end{cases}}}\)
Vậy Min B = 0 Khi \(x=\frac{1}{4};y=-\frac{1}{2}\)
Sửa đề chút nha bạn ! \(B=\left|4x-1\right|+\left|2x+1\right|\) và Điều kiện là \(x\in Z\)
Bài giải
Áp dụng : \(\left|A\right|\ge A\) Ta có :
\(\left|1-4x\right|\ge1-4x\text{ Dấu " = " xảy ra khi }1-4x>0\text{ }\Rightarrow\text{ }4x< 1\text{ }\Rightarrow\text{ }x< \frac{1}{4}\)
\(\left|2x+1\right|\ge2x+1\text{ Dấu " = " xảy ra khi }2x+1>0\text{ }\Rightarrow\text{ }2x>-1\text{ }\Rightarrow\text{ }x>-\frac{1}{2}\)
\(\Rightarrow\text{ }\left|1-4x\right|+\left|2x+1\right|\ge1-4x+2x+1\)
\(\Rightarrow\text{ }\left|1-4x\right|+\left|2x+1\right|\ge2x+2\text{ Dấu " = " xảy ra khi }-\frac{1}{2}< x< \frac{1}{4}\)
Đến đây chịu ! Sai ở đâu thì phải !