tìm 2 số lẻ liên tiếp biết tích của chúng lớn hơn tổng là 167
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:x\ne\pm5\)
\(\frac{5}{x+5}-\frac{x-3}{5-x}=\frac{2x-40}{x^2-25}\)
\(\Leftrightarrow\frac{5}{x+5}+\frac{x-3}{x-5}=\frac{2x-40}{x^2-25}\)
\(\Leftrightarrow\frac{5x-25+5x-15}{x^2-25}=\frac{2x-40}{x^2-25}\)
\(\Rightarrow10x-40=2x-40\)
\(\Leftrightarrow x=0\left(TMĐKXĐ\right)\)
Vậy x=0
\(\frac{5}{x+5}-\frac{x-3}{5-x}=\frac{2x-40}{x^2-25}\) ( đkxđ : \(x\ne\pm5\))
( 5 - x ) = -( 5 - x ) = -5 + x = x - 5
<=> \(\frac{5}{x+5}-\frac{x-3}{x-5}=\frac{2x-40}{\left(x+5\right)\left(x-5\right)}\)
<=> \(\frac{5\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}-\frac{\left(x+5\right)\left(x-3\right)}{\left(x+5\right)\left(x-5\right)}=\frac{2x-40}{\left(x+5\right)\left(x-5\right)}\)
<=> \(5x-25-x^2+2x-15=2x-40\)
<=> \(5x-x^2+2x-2x=-40+25+15\)
<=> \(5x-x^2=0\)
<=> \(x^2-5x=0\)
<=> \(x\left(x-5\right)=0\)
<=> x = 0 ( nhận ) hoặc x = 5 ( loại do đkxđ )
Vậy nghiệm của phương trình là x = 0
<=>
Hai số lẻ liên tiếp là a; a+2
Theo đề bài
a(a+2)-(a+a+2)=167
axa+2xa-2xa-2=167
axa=169 => a=-13 hoặc a=13
+ a=13 => b=15
+a=-13 => b=-11