Cho tam giác ABC nhọn (AB<AC), đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là đường thẳng BC lấy các điểm D và E sao cho BD vuông góc BA, BD = BA; CE vuông góc CA, CE = CA. Trên tia đối của tia AH lấy điểm I sao cho AI =BC. Chứng minh các đường thẳng AH, BE, CD đồng quy.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

LT
2

17 tháng 7 2020
Nên nhớ cái này là hỏi đáp đấy
đọc lại nội quy đi bà nội
5 tháng 11 2021
-.- ulatr đừng đăng mấy post linh tinh nx đc ko?

30 tháng 6 2020
a
Ta có:
\(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m-1\right)^2+2>0\)
Nên phương trình luôn có 2 nghiệm phân biệt với mọi m
b
Phương trình có 2 nghiệm trái dấu thì \(2m-3< 0\Leftrightarrow m< \frac{3}{2}\)
Vậy .....................
DT
3

PT
0

NM
2

30 tháng 6 2020
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+.....+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}=\frac{9}{10}\)