K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2020

\(f\left(x\right)=x2-7x+6\)

ta có f(x)=0

hay\(x2-7x+6=0\)

\(\Leftrightarrow x2-7x=-6\)

\(\Leftrightarrow x\left(-5\right)=-6\)

\(\Leftrightarrow x=\frac{6}{5}\)

vậy nghiệm của đa thức f(x) là 6/5

10 tháng 6 2020

\(f\left(x\right)=x^2-7x+6\)

\(f\left(x\right)=0\Leftrightarrow x^2-7x+6=0\)

                   \(\Leftrightarrow x^2-x-6x+6=0\)

                   \(\Leftrightarrow x.\left(x-1\right)-6.\left(x-1\right)=0\)

                   \(\Leftrightarrow\left(x-1\right).\left(x-6\right)=0\)

                   \(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}z=1\\x=6\end{cases}}\)

Vậy phương trình có 2 nghiệm \(x=\left\{1,6\right\}\)

10 tháng 6 2020

72,54 - (30,5 + 14,04)

= 72,54 - 30,5 - 14,04

= 42,04 - 14,04

= 28

#Im tired..

P/s: Me chỉ làm 1 cách thui :P

10 tháng 6 2020

Cách 1

\(72,54-\left(30,5+14,04\right)\)

\(=72,54-44,54\)

\(=28\)

Cách 2 

\(72,54-\left(30,5+14,04\right)\)

\(=72,54-30,5-14,04\)

\(=42,04-14,04\)

\(=28\)

10 tháng 6 2020

Ta có: \(a^2-ab+b^2=a+b\)

<=> \(a^2-a\left(b+1\right)+b^2-b=0\)

<=> \(a^2-2a.\frac{b+1}{2}+\left(\frac{b+1}{2}\right)^2-\frac{b^2}{4}-\frac{b}{2}-\frac{1}{4}+b^2-b=0\)

<=> \(\left(a-\frac{b+1}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2=1\)

Ta có: \(\left(a-\frac{b+1}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2=\frac{\left(a-\frac{b+1}{2}\right)^2}{1}+\frac{\left(\frac{3}{2}b-\frac{3}{2}\right)^2}{3}\)

\(\ge\frac{\left(a+b-2\right)^2}{4}\)

=> \(1\ge\frac{\left(a+b-2\right)^2}{4}\)

<=> \(\left(a+b-2\right)^2\le4\)

<=> \(-2\le a+b-2\le2\)

<=> \(0\le a+b\le4\)

mà  \(P=505a+505b=505\left(a+b\right)\)

=> \(0\le P\le2020\)

Dấu "=" xảy ra <=> \(\frac{a-\frac{b+1}{2}}{1}=\frac{\frac{3}{2}b-\frac{3}{2}}{3}\)<=> a = b 

Nếu P = 0 khi đó: a + b = 0 <=> a = b = 0 

Nếu P = 2020 <=>  a + b = 4 <=> a = b = 2

Vậy: GTNN của P = 0 đạt tại a = b = 0 

GTLN của P= 2020 đạt tại a = b = 2

4 tháng 7 2020

\(a^2-ab+b^2=a+b\Rightarrow\left(a-b\right)^2=a+b-ab\)

\(\left(a-b\right)^2\ge0\Rightarrow\left(a+b\right)\ge ab\Rightarrow2\left(a+b\right)\ge2ab\)

\(\Leftrightarrow\left(a+b\right)^2\le2\left(a+b\right)+a^2+b^2=2\left(a+b\right)+a+b+ab\le4\left(a+b\right)\)

\(\Leftrightarrow0\le a+b\le4\Leftrightarrow0\le P\le2020\)\(D=xr\Leftrightarrow\orbr{\begin{cases}a=b=0\\a=b=2\end{cases}}\)

18 tháng 6 2020

Theo mình thì là are you interested in flying cars?

Mình ko chắc nữa, nếu sai thì bảo mình nha, hok tốt!

10 tháng 6 2020

Từ 1 đến 9 cần 9 chữ số

Từ 10 đến 99 có 90 số => Số chữ số cần dùng là 90 . 2 = 180

Số chữ số còn lại : 435 - 9 - 180 = 246

Từ 100 mỗi số có 3 chữ số

=> 246 chữ số ứng với : 246 : 3 = 82 số

=> Quyển sách đó dày : 9 + 90 + 82 = 181 trang 

10 tháng 6 2020

=> Từ 1 đến 9 là 9 chữ số 

=> Từ 10 đến 99 là 90 chữ số

=> Chữ số ta cần dùng là 90 x 2 +9 =189 chữ số

-Từ 100 mỗi số có 3 chữ số

- 435-189=246 chữ số ứng với 246 : 3= 82 chữ số

Quyển sách đó có số trang là :

82 + 90 + 9=181 ( trang)

[mình nhĩ ra cách thế này ko biết đúng không ~~~~]

*Ryeo*

26 tháng 7 2020

Trả lời:

\(E=\sqrt[3]{\sqrt{5}-2}+\sqrt[3]{\sqrt{5}+2}\)

\(2E=2.\sqrt[3]{\sqrt{5}-2}+2.\sqrt[3]{\sqrt{5}+2}\)

\(2E=\sqrt[3]{8\sqrt{5}-16}+\sqrt[3]{8\sqrt{5}+16}\)

\(2E=\sqrt[3]{5\sqrt{5}-15+3\sqrt{5}-1}+\sqrt[3]{5\sqrt{5}+15+3\sqrt{5}+1}\)

\(2E=\sqrt[3]{\left(\sqrt{5}-1\right)^3}+\sqrt[3]{\left(\sqrt{5}+1\right)^3}\)

\(2E=\sqrt{5}-1+\sqrt{5}+1\)

\(2E=2\sqrt{5}\)

\(E=\sqrt{5}\)

\(F=\sqrt[3]{182+\sqrt{33125}}+\sqrt[3]{182-\sqrt{33125}}\)

\(F=\sqrt[3]{182+25\sqrt{53}}+\sqrt[3]{182-25\sqrt{53}}\)

\(2F=2.\sqrt[3]{182+25\sqrt{53}}+2.\sqrt[3]{182-25\sqrt{53}}\)

\(2F=\sqrt[3]{1456+200\sqrt{53}}+\sqrt[3]{1456-200\sqrt{53}}\)

\(2F=\sqrt[3]{343+147\sqrt{53}+1113+53\sqrt{53}}+\sqrt[3]{343-147\sqrt{53}+1113-53\sqrt{53}}\)

\(2F=\sqrt[3]{\left(7+\sqrt{53}\right)^3}+\sqrt[3]{\left(7-\sqrt{53}\right)^3}\)

\(2F=7+\sqrt{53}+7-\sqrt{53}\)

\(2F=14\)

\(F=7\)