so sánh: 10^20 và 99^10
giúp tôi nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2716}{2177}< \dfrac{2718}{2177}< \dfrac{2718}{2119}\Rightarrow\dfrac{2716}{2177}< \dfrac{2718}{2119}\)
\(a=2022.\left|x^2+1\right|+2023\)
\(\Rightarrow a=2022.\left(x^2+1\right)+2023\left(\left|x^2+1\right|>0,\forall x\right)\)
mà \(\left(x^2+1\right)\ge1,\forall x\)
\(\Rightarrow a=2022.\left(x^2+1\right)+2023\ge2022.1+2023=4045\)
\(\Rightarrow GTNN\left(a\right)=4045\left(x=0\right)\)
a) \(x:\dfrac{1}{2}=\left(-\dfrac{1}{2}\right)^4\Rightarrow x:\dfrac{1}{2}=\dfrac{1}{16}\Rightarrow x=\dfrac{1}{16}.2=\dfrac{1}{8}\)
b) \(\left(-\dfrac{4}{7}\right)^5.x=\left(\dfrac{4}{7}\right)^7\Rightarrow-\left(\dfrac{4}{7}\right)^5.x=\left(\dfrac{4}{7}\right)^7\Rightarrow x=-\left(\dfrac{4}{7}\right)^7:\left(\dfrac{4}{7}\right)^5\Rightarrow x=-\left(\dfrac{4}{7}\right)^2=-\dfrac{16}{49}\)
Đính chính câu a
\(x:\dfrac{1}{2}=\dfrac{1}{16}\Rightarrow x=\dfrac{1}{16}.\dfrac{1}{2}=\dfrac{1}{32}\)
\(\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{3}=\dfrac{23}{12}\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{23}{12}+\dfrac{1}{3}=\dfrac{9}{4}\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{3}{2}\\x-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}+\dfrac{1}{2}=2\\x=-\dfrac{3}{2}+\dfrac{1}{2}=-1\end{matrix}\right.\)
\(\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{3}=\dfrac{23}{12}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{23}{12}+\dfrac{1}{3}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{9}{4}=\left(\dfrac{3}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{3}{2}\\x-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Số vài trắng là: ( 480 - 240 ) : 2=120 (m)
Tổng số vải của vải kẻ và vải hoa là: 480 - 120 =360 (m)
Số m vải kẻ là: 360 : ( 3+5) x 5 = 225 (m)
Số m vải hoa là: 360 - 225 =135 (m)
\(10^{20}=\left(10^2\right)^{10}=100^{10}>99^{10}\Rightarrow10^{20}>99^{10}\)
1020 > 9910