chứng minh rằng trong 1 tam giác cân, trung điểm của cạnh đáy đều cách đều hai cạnh bên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. When the police came to the scene, the driver of the car ___had left___.
2. All people who were without home in the flood were provided with ___temporary accommodation___.
=> temporary accommodation: chỗ ở tạm thời
Dịch: Tất cả những người mà không có nhà trong mùa lũ thì được cung cập chỗ ở tạm thời.
Ta có: A=\(\frac{20^8+1}{20^9+1}\)
=>20A=\(\frac{20^9+20}{20^9+1}\)=\(\frac{20^9+1+19}{20^9+1}=1+\frac{19}{20^9+1}\)
Lại có B=\(\frac{20^9+1}{20^{10}+1}\)
=>20B=\(\frac{20^{10}+20}{20^{10}+1}\)=\(\frac{20^{10}+1+19}{20^{10}+1}=\frac{20^{10}+1}{20^{10}+1}+\frac{19}{20^{10}+1}=1+\frac{19}{20^{10}+1}\)
Ta thấy \(20^9+1< 20^{10}+1\)
=>\(\frac{19}{20^9+1}>\frac{19}{20^{10}+1}\)
=>\(1+\frac{19}{20^9+1}>1+\frac{19}{20^{10}+1}\)
hay A>B
Vậy A>B
Xin lỗi vì sau 1 thời gian dài mới làm vì mik nghĩ bạn cx làm xong rồi nhưng coi như mik làm để tập quen vs nâng cao ik
1. Năng lượng
2. Nuôi con đến khi có thể tự kiếm ăn
3. Sinh con
4. Là tài sản không do con người tạo ra
B C A M D E
Giả sử cho tam giác ABC cân tại A, M là trung điểm của BC; từ M kẻ MD,ME lần lượt vuông góc với AB,AC tại D,E.
Bây giờ ta cần chứng minh MD=ME
Bài làm:
Vì M là trung điểm của BC
=> AM là trung tuyến của tam giác ABC; mà tam giác ABC cân tại A
=> AM đồng thời là đường phân giác của tam giác ABC
=> \(\widehat{BAM}=\widehat{MAC}\)(hoặc bạn có thể chứng minh \(\Delta AMB=\Delta AMC\left(c.c.c\right)\))
\(\Delta AMD=\Delta AME\left(c.h-g.n\right)\)
vì: \(\hept{\begin{cases}AMchung\\\widehat{BAM}=\widehat{MAC}\left(cmt\right)\end{cases}}\)
=> MD=ME
=> Trung điểm của canh đáy của tam giác cân cách đều 2 canh bên của tam giác
=> đpcm
Học tốt!!!!
đặt tam giác ABC cân tại A và có M là trung điểm của BC, tự vẽ hình nha
xét tam giác ABM và tam giác ACM có
AB=AC(gt)
ABC=ACB(gt)
BM=CM(gt)
=> tam giác ABM= tam giác ACM(cgc)
=>BAM=CAM( hai góc tương ứng)
=> AM là phân giác của BAC=> M thuộc tia phân giác của BAC
=> M cách đều hai cạnh bên của tam giác