Giải hệ phương trình gồm 5 phương trình sau:
PT1: \(a+b+2c+d+e=\frac{53}{12}\)\
PT2: \(a=2b\)
PT3: \(e=2d\)
PT4: \(2a+3c+4d=6\)
PT5: \(2e+3c+4b=6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x+\frac{1}{2}y+\frac{1}{2}z=204\\y+\frac{1}{3}x+\frac{1}{3}z=204\\z+\frac{1}{4}x+\frac{1}{4}y=204\end{cases}}\)
Ta có: \(\hept{\begin{cases}x+\frac{1}{2}y+\frac{1}{2}z=204\\y+\frac{1}{3}x+\frac{1}{3}z=204\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{3}x+\frac{1}{6}y+\frac{1}{6}z=68\left(1\right)\\\frac{1}{2}y+\frac{1}{6}x+\frac{1}{6}z=102\left(2\right)\end{cases}}}\)
Lấy (1) trừ (2) \(\Rightarrow\frac{1}{6}x-\frac{1}{3}y=-34\) (3)
Lại có: \(\hept{\begin{cases}y+\frac{1}{3}x+\frac{1}{3}z=204\\z+\frac{1}{4}x+\frac{1}{4}y=204\end{cases}}\Leftrightarrow\hept{\begin{cases}y+\frac{1}{3}x+\frac{1}{3}z=204\left(4\right)\\\frac{1}{3}z+\frac{1}{12}x+\frac{1}{12}y=68\left(5\right)\end{cases}}\)
Lấy (4) trừ (5) \(\Rightarrow\frac{11}{12}y+\frac{1}{4}x=136\) (6)
Từ (3) và (6) ta có hệ \(\hept{\begin{cases}\frac{1}{6}x-\frac{1}{3}y=-34\\\frac{11}{12}y+\frac{1}{4}x=136\end{cases}}\)
Bạn tự giải hệ tiếp rồi thay vào 1 trong 3 pt ban đầu tìm x rồi đối chiếu điều kiện nha
\(A=\sqrt{\left(a^2+\frac{1}{a^2}\right)^2-4\left(a+\frac{1}{a}\right)^2+12}\)
\(A=\sqrt{\left(a^2+\frac{1}{a^2}\right)^2-4\left(a^2+2a.\frac{1}{a}+\frac{1}{a^2}\right)+12}\)
\(A=\sqrt{\left(a^2+\frac{1}{a^2}\right)^2-4\left(a^2+\frac{1}{a^2}+2\right)+12}\)
\(A=\sqrt{\left(a^2+\frac{1}{a^2}\right)^2-4\left(a^2+\frac{1}{a^2}\right)-8+12}\)
\(A=\sqrt{\left(a^2+\frac{1}{a^2}\right)^2-4\left(a^2+\frac{1}{a^2}\right)+4}\)
\(A=\sqrt{\left(a^2+\frac{1}{a^2}-2\right)^2}\)
\(A=\left|a^2+\frac{1}{a^2}-2\right|\)
Ta có \(a^2>0\)nên \(\frac{1}{a^2}>0\)(không có dấu bằng xảy ra vì \(a^2\)nằm dưới mẫu)
Áp dụng BĐT Cô-si cho 2 số dương \(a^2\)và \(\frac{1}{a^2}\), ta có:
\(a^2+\frac{1}{a^2}\ge2\sqrt{a^2.\frac{1}{a^2}}=2\)\(\Leftrightarrow a^2+\frac{1}{a^2}-2\ge0\)
Chính vì vậy \(A=a^2+\frac{1}{a^2}-2\)
Ta có \(\hept{\begin{cases}x=\frac{1}{3}\left(y+z+t\right)\\y=\frac{1}{4}\left(x+z+t\right)\\z=\frac{1}{5}\left(x+y+t\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}4x=x+y+z+t\\5y=x+y+z+t\\6z=x+y+z+t\end{cases}}\Leftrightarrow\hept{\begin{cases}4x=6\\5y=6\\6z=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{6}{5}\\z=1\end{cases}}\)
mà x + y + z + t = 6
<=> \(\frac{3}{2}+\frac{6}{5}+1+t=6\Leftrightarrow t=\frac{23}{10}\)
Vậy hệ có 1 nghiệm duy nhất (x;y;z;t) = \(\left(\frac{3}{2};\frac{6}{5};1;\frac{23}{10}\right)\)
@✎﹏ミ★꧁༺вєѕт↭ℓαυяιєℓ↭νи༻꧂★ミ.༻(Trưởng TΣΔM...???)ッ
Chắc kiểu đăng câu hỏi xong tự trả lời đầy đủ để OLM t i c k đấy
Dầy bn như vậy r
\(A=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}-\frac{1}{\sqrt{x}-2}\)(\(x\ge0,x\ne4\))
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\frac{5}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4-5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}-4}{\sqrt{x}-2}\)
\(x=6+4\sqrt{2}=4+2.2.\sqrt{2}+2=\left(2+\sqrt{2}\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(2+\sqrt{2}\right)^2}=2+\sqrt{2}\)
\(A=\frac{2+\sqrt{2}-4}{2+\sqrt{2}-2}=1-\sqrt{2}\)
Gọi số phải tìm là: ab
Khi viết thêm 1 vào bên phải thì được: ab1
Theo đề bài thì ta có hệ:
\(\hept{\begin{cases}100a+10b+1-10a-b=577\\10a+b-10b-a=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=6\\b=4\end{cases}}\)
Vậy số phải tìm kà 64
Gọi vận tốc của 2 xe xuất phát tại A,B lần lượt là vA và vB
Lượt đi, 2 xe gặp nhau tại vị trí cách B 50km, cách A 70km nên \(\frac{v_A}{v_B}=\frac{70}{50}=\frac{7}{5}\)
Gọi lượt về 2 xe gặp nhau tại vị trí cách A là x(km)
Quãng đường xe từ A đi đc là 2AB-x=240-x
Quãng đường xe từ B đi đc là AB+x=120+x
ta có \(\frac{240-x}{120+x}=\frac{7}{5}\)
\(\Rightarrow\)x=30(km)
vậy cách A là 30km (hơi dài, mà thôi nhác nghĩ quá)
chúc bạn học tốt
HYC-24/1/2022
TL:
Bài khó quá,Tôi lớp 9 mà cô chưa dạy
Thôi xl nha
HT
Thực ra nó là bài toán thực tế mà lúc lập hpt nó ra vậy.