chứng minh với mọi giá trị x ta luôn có: x5 + (1 - x)5 >= 1/16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x/x+1 = 1- 1/x+1
y/y+1 = 1- 1/y+1
z/z+1=1- 1/z+1
==) P = 3 - ( 1/x+1 + 1/y+1 + 1/x+1 )
Áp dụng Bất đẳng thức 1/a + 1/b + 1/c >= 9/a+b+c
==) P>=3 - 9/4 = 3/4
Dấu "=" xảy ra khi x,y,z \(\in\)R
x=y=z \(\)
x+y+z=1
==) x=y=z =1/3
Vậy MinP = 3/4 khi x=y=z=1/3
Mình đã tìm ra cách giải rồi, các bạn có thể góp ý để bài làm của mình hoàn thiện hơn nữa nha...
Ta có:\(\frac{1}{A}=\frac{\sqrt{a-2003}+\sqrt{b-2003}}{\sqrt{a+b}}=\frac{\sqrt{a-2003}}{\sqrt{a+b}}+\frac{\sqrt{b-2003}}{\sqrt{a+b}}\)
Mặt khác:\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2003}\Rightarrow\frac{a+b}{ab}=\frac{1}{2003}\Rightarrow2003=\)\(\frac{ab}{a+b} \left(1\right)\)
Thay (1) vào \(\frac{1}{A}\) ta được: \(\frac{1}{A}=\frac{\sqrt{a-\frac{ab}{a+b}}}{\sqrt{a+b}}+\frac{\sqrt{b-\frac{ab}{a+b}}}{\sqrt{a+b}}\)
\(\Leftrightarrow\frac{1}{A}=\sqrt{\frac{a-\frac{ab}{a+b}}{a+b}}+\sqrt{\frac{b-\frac{ab}{a+b}}{a+b}}\)
\(\Leftrightarrow\frac{1}{A}=\sqrt{\frac{\frac{a^2+ab-ab}{a+b}}{a+b}}+\sqrt{\frac{\frac{b^2+ab-ab}{a+b}}{a+b}}=\sqrt{\frac{a^2}{\left(a+b\right)^2}}+\sqrt{\frac{b^2}{\left(a+b\right)^2}}\)
\(\Leftrightarrow\frac{1}{A}=\left|\frac{a}{a+b}\right|+\left|\frac{b}{a+b}\right|=\frac{a}{a+b}+\frac{b}{a+b}\left(a>2003;b>2003\right)\)
\(\Leftrightarrow\frac{1}{A}=\frac{a+b}{a+b}=1\Leftrightarrow A=1\)
Vậy............................
ĐK: \(x\ge0;x\ne4\)
\(\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{x-4}\)
\(=\frac{x+2\sqrt{x}}{x-4}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
Tam giác nội tiếp đường tròn có 1 cạnh là đường kính thì tam giác đó vuông tại đỉnh đối diện vs cạnh đó