K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2020

Ta đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c;\frac{1}{t}=d\)  ( a, b, c, d >0 )

Khi đó ta cần chứng minh:

 \(\frac{a^3}{\frac{1}{bc}+\frac{1}{cd}+\frac{1}{db}}+\frac{b^3}{\frac{1}{ac}+\frac{1}{cd}+\frac{1}{da}}+\frac{c^3}{\frac{1}{ab}+\frac{1}{bd}+\frac{1}{da}}+\frac{d^3}{\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}}\ge\frac{1}{3}\left(a+b+c+d\right)\)

\(VT=\frac{a^3}{\frac{b+c+d}{bcd}}+\frac{b^3}{\frac{a+c+d}{acd}}+\frac{c^3}{\frac{a+b+d}{abd}}+\frac{d^3}{\frac{a+b+c}{abc}}\)

\(=\frac{a^3}{\frac{a\left(b+c+d\right)}{abcd}}+\frac{b^3}{\frac{b\left(a+c+d\right)}{abcd}}+\frac{c^3}{\frac{c\left(a+b+d\right)}{abcd}}+\frac{d^3}{\frac{d\left(a+b+c\right)}{abcd}}\)

\(=\frac{a^2}{b+c+d}+\frac{b^2}{a+c+d}+\frac{c^2}{a+b+d}+\frac{d^2}{a+b+c}\)

\(\ge\frac{\left(a+b+c+d\right)^2}{3\left(a+b+c+d\right)}=\frac{a+b+c+d}{3}=VP\)

Vậy ta đã chứng minh được

\(\frac{a^3}{\frac{1}{bc}+\frac{1}{cd}+\frac{1}{db}}+\frac{b^3}{\frac{1}{ac}+\frac{1}{cd}+\frac{1}{da}}+\frac{c^3}{\frac{1}{ab}+\frac{1}{bd}+\frac{1}{da}}+\frac{d^3}{\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}}\ge\frac{1}{3}\left(a+b+c+d\right)\)

Dấu "=" xảy ra <=> a = b = c = d 

Vậy : 

\(\frac{1}{x^3\left(yz+zt+ty\right)}+\frac{1}{y^3\left(xz+zt+tx\right)}+\frac{1}{z^3\left(xy+yt+tx\right)}+\frac{1}{t^3\left(xy+yz+zx\right)}\ge\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\)

Dấu "=" xảy ra <=> x = y = z = t = 1

28 tháng 12 2017

\(BDT\Leftrightarrow\frac{\left(a-2\right)^2\left(a+2\right)\left(2a^2+3a+4\right)}{2\left(a-1\right)\left(a+1\right)^3}\ge0\forall a>1\)

25 tháng 7 2019

\(BDT=\frac{\left(A-2\right)^2\left(A+2\right)\left(2a^2+3a+4\right)}{2\left(a-1\right)\left(a+1\right)^3}>0\forall a>1\)

~Study well~ :)

28 tháng 12 2017

C.m BĐT phụ \(\frac{a}{b^2+c^2}=\frac{a}{1-a^2}\ge\frac{3\sqrt{3}}{2}a^2\)

29 tháng 12 2017

x = 1

y = 1

Đúng 100%

k mình nha . 

29 tháng 12 2017

Mấy bạn giải chi tiết giùm mình được không ?

28 tháng 12 2017

Ta co :(x+y)^2=(x-1)(y-1)

X^2+2xy+y^2=xy-x-y+1

2x^2+2xy+2y^2+x+y-2=0

(x^2+2xy+y^2)+(x^2+2x+1)+(y^2+2y+1)=4

(x+y)^2+(x+1)^2+(y+1)^2=4

Do x;y€Z nen (x+y)^2;(x+1)^2;(y+1)^2 la cac so chinh phuong

Suy ra co 3 truong hop

°(x+y)^2=0;(x+1)^2=0;(y+1)^2=4

°(x+y)^2=0;(x+1)^2=4;(y+1)^2=0

°(x+y)^2=4;(x+1)^2=0;(y+1)^2=0

Sau do tu giai ra tim x;y